scholarly journals Neutron stars in frames of R2-gravity and gravitational waves

2019 ◽  
Vol 16 (01) ◽  
pp. 1950004 ◽  
Author(s):  
Artyom V. Astashenok ◽  
Alexey S. Baigashov ◽  
Sergey A. Lapin

The realistic models of neutron stars are considered for simple [Formula: see text] gravity and equivalent Brance–Dicke theory with dilaton field in Einsein frame. For negative values of [Formula: see text] we have no acceptable results from astrophysical viewpoint: the resulting solution for spherical stars doesn’t coincide with Schwarzschild solution on spatial infinity. The mass of star from viewpoint of distant observer tends to very large values. For [Formula: see text] it is possible to obtain solutions with required asymptotics and well-defined star mass. The mass confined by stellar surface decreases with increasing of [Formula: see text] but we have some contribution to mass from gravitational sphere appearing outside the star. The resulting effect is increasing of gravitational mass from viewpoint of distant observer. But another interpretation take place in a case of equivalent Brance–Dicke theory with massless dilaton field in Einstein frame. The mass of star increases due to contribution of dilaton field inside the star. We also considered the possible constraints on [Formula: see text] gravity from GW 170817 data. According to results of Bauswein et al. the lower limit on threshold mass is [Formula: see text][Formula: see text][Formula: see text]. This allows to exclude some equations of state (EoS) for dense matter. But in [Formula: see text] gravity the threshold mass increases for given EoS with increasing of [Formula: see text]. In principle it can helps in future discriminate between General Relativity and square gravity (of course one need to know EoS with more accuracy rather than now).

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


2020 ◽  
Author(s):  
◽  
Germán Malfatti

This thesis work focuses on studying the possible existence of phase transitions in the immediate compact remnants of core collapse supernova, neutron stars, and the theoretical models that describe the interior of dense matter. Specifically, we are interested in analyzing the feasibility of a transition from hadronic matter to quark matter in the cores of these objects. The density of matter inside neutron stars is several times that of atomic nuclei, and the equation of state that describes such matter in such a regime is still unknown. In this context, it is known that the interaction between the constituents of nucleons, the quarks, weakens with increasing density due to the intrinsic property of the QCD known as it asymptotic freedom. Therefore, matter should either dissolve into a quark-free state at high densities, or else form a superconduct- ing state of color. This superconducting phase of color would be energetically favorable, if it were present in a cold neutron star, since a system of fermions that interact weakly at low temperature is unstable with respect to the formation of Cooper pairs. Although it is impossible to know both theoretically and experimentally whether these phases exist in neutron stars, the interpolation of the resolvable part of QCD at high densities, together with the hadronic equations of state at low densities, suggest that they could appear in the interior of compact objects. For the phase transition we will use two different formalisms: the Maxwell formalism, in which an abrupt phase transition between hadronic and quark matter without mixed phase formation is assumed, and the Gibbs formalism, in which a mixed phase in which hadrons and quarks coexist. For the description of hadronic matter, we will use different parametrizations of the relativistic mean field model with density-dependent coupling constants. For the description of quark matter we will use an effective nonlocal Nambu Jona-Lasinio model of three flavors with vector interactions, in which we will include the possibility of formation of diquarks to model a superconducting phase of color in SU (3), which we will call 2SC + s. Phase diagrams and equations of state of quark matter at finite temperature are presented, and the influence of that kind of matter on observables associated with neutron stars is investigated. Likewise, using hybrid equations of state, the simplified thermal evolution of compact stars during their formation is studied, from their state of proto-neutron stars to that of cold neutron stars, and the results obtained are compared with recent astrophysical observations. The pa- rameterizations used in this work are adjusted to the most recent measurements of masses and coupling constants of the QCD, which imposes strong restrictions on the existence of quark matter in proto-stars, unlike what happens with less realistic models or with more free parameters. However, the results obtained indicate that even considering these restrictions, the occurrence of quark matter in the nuclei of these stars remains a promis- ing possibility. The remaining free parameters of the models were adjusted taking into account the observational restrictions, coming from precise determinations of the pulsars masses of ∼ 2 M⊙, and the event corresponding to the fusion of two neutron stars, known as GW170817. The fact that the use of more realistic models for the description of the dense matter in these objects indicates the presence of quark matter inside neutron stars, could be an answer to the question of the behavior of that kind of matter and the determination of its corresponding equation of state.


Particles ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 532-542 ◽  
Author(s):  
Artyom Astashenok ◽  
Sergey Odintsov

We present a brief review of general results about non-rotating neutron stars in simple R 2 gravity and its extension with a scalar axion field. Modified Einstein equations are presented for metrics in isotropical coordinates. The mass–radius relation, mass profile and dependence of mass from central density on various equations of state are given in comparison to general relativity.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 137
Author(s):  
Andrzej Królak ◽  
Paritosh Verma

In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations.


Author(s):  
J.M. Lattimer

Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Georg Herzog ◽  
Hèlios Sanchis-Alepuz

AbstractWe study solutions of the stellar structure equations for spherically symmetric objects in modified theories of gravity, where the Einstein-Hilbert Lagrangian is replaced by $$f(R)=R+\alpha R^2$$ f ( R ) = R + α R 2 and $$f(R,Q)=R+\alpha R^2+\beta Q$$ f ( R , Q ) = R + α R 2 + β Q , with R being the Ricci scalar curvature, $$Q=R_{\mu \nu }R^{\mu \nu }$$ Q = R μ ν R μ ν and $$R_{\mu \nu }$$ R μ ν the Ricci tensor. We work in the Palatini formalism, where the metric and the connection are assumed to be independent dynamical variables. We focus on stellar solutions in the mass-radius region associated to neutron stars. We illustrate the potential impact of the $$R^2$$ R 2 and Q terms by studying a range of viable values of $$\alpha $$ α and $$\beta $$ β . Similarly, we use different equations of state (SLy, FPS, HS(DD2) and HS(TMA)) as a simple way to account for the equation of state uncertainty. Our results show that for certain combinations of the $$\alpha $$ α and $$\beta $$ β parameters and equation of state, the effect of modifications of general relativity on the properties of stars is sizeable. Therefore, with increasing accuracy in the determination of the equation of state for neutron stars, astrophysical observations may serve as discriminators of modifications of General Relativity.


Sign in / Sign up

Export Citation Format

Share Document