Existence and uniqueness results for a class of nonlocal conservation laws by means of a Lax–Hopf-type solution formula

2020 ◽  
Vol 17 (04) ◽  
pp. 677-705
Author(s):  
Alexander Keimer ◽  
Manish Singh ◽  
Tanya Veeravalli

We study the initial value problem and the initial boundary value problem for nonlocal conservation laws. The nonlocal term is realized via a spatial integration of the solution between specified boundaries and affects the flux function of a given “local” conservation law in a multiplicative way. For a strictly convex flux function and strictly positive nonlocal impact we prove existence and uniqueness of weak entropy solutions relying on a fixed-point argument for the nonlocal term and an explicit Lax–Hopf-type solution formula for the corresponding Hamilton–Jacobi (HJ) equation. Using the developed theory for HJ equations, we obtain a semi-explicit Lax–Hopf-type formula for the solution of the corresponding nonlocal HJ equation and a semi-explicit Lax–Oleinik-type formula for the nonlocal conservation law.

2017 ◽  
Vol 72 (4) ◽  
pp. 351-357 ◽  
Author(s):  
R. Naz

Abstract:The potential systems and nonlocal conservation laws of Prandtl boundary layer equations on the surface of a sphere have been investigated. The multiplier approach yields two local conservation laws for the Prandtl boundary layer equations on the surface of a sphere. Two potential variables ψ and ϕ are introduced corresponding to first and second conservation law. Moreover, another potential variable p is introduced by considering the linear combination of both conservation laws. Two level one potential systems involving a single nonlocal variable ψ or ϕ are constructed. One level two potential system involving both nonlocal variables ψ and ϕ is established. The nonlocal variable p is utilised to derive a spectral potential system. The nonlocal conservation laws of Prandtl boundary layer equations on the surface of a sphere are derived by computing the local conservation laws of its potential systems. The nonlocal conservation laws are utilised to derive the further nonlocally related systems.


Author(s):  
Maria Colombo ◽  
Gianluca Crippa ◽  
Marie Graff ◽  
Laura V. Spinolo

We deal with the numerical investigation of the local limit of nonlocal conservation laws. Previous numerical experiments seem to suggest that the solutions of the nonlocal problems converge to the entropy admissible solution of the conservation law in the singular local limit. However, recent analytical results state that (i) in general convergence does not hold because one can exhibit counterexamples; (ii)~convergence can be recovered provided viscosity is added to both the local and the nonlocal equations.  Motivated by these analytical results, we investigate the role of numerical viscosity in the numerical study of the local limit of nonlocal conservation laws. In particular, we show that Lax-Friedrichs type schemes  may provide the wrong intuition and erroneously suggest that the solutions of the nonlocal problems converge to the entropy admissible solution of the conservation law in cases where this is ruled out by analytical results. We also test Godunov type schemes, less affected by numerical viscosity, and show that in some cases they provide an intuition more in accordance with the analytical results.


2018 ◽  
Vol 21 (3) ◽  
pp. 150-159
Author(s):  
N. G. Khor’kova

Популярное в математике понятие интегрируемости дифференциальных уравнений (и столь же разнообразно трактуемое) тесно связано с существованием симметрий и законов сохранения. Все известные интегрируемые дифференциальные уравнения обладают бесконечными сериями симметрий и (или) законов сохранения. Однако также имеется целый ряд уравнений, важных для приложений, но имеющих крайне скудный запас симметрий или законов сохранения. Попытки расширить понятия симметрии и закона сохранения предпринимались разными авторами, и на эту тему имеется обширная литература. В данной статье представлен следующий результат. Если ℓ-нормальная система дифференциальных уравнений в частных производных имеет когомологически нетривиальный закон сохранения, то этот закон сохранения порождает бесконечную серию нелокальных законов сохранения. Этот факт обобщает аналогичный результат статьи автора для дифференциальных уравнений (не систем). Результат получен в рамках геометрической теории дифференциальных уравнений в частных производных. Согласно геометрическому подходу, многообразие, снабженное конечномерным распределением, удовлетворяющим условиям интегрируемости Фробениуса, называется диффеотопом (diffiety), если локально оно имеет вид бесконечно продолженного уравнения Ɛ∞. Диффеотопы являются объектами категории дифференциальных уравнений, введенной А.М. Виноградовым. Под симметриями уравнения понимают преобразования (конечные или инфинитизимальные) бесконечного продолжения уравнения, которые сохраняют распределение Картана, а под законами сохранения – (n-1)-e классы когомологий горизонтального комплекса де Рама уравнения, где n – число независимых переменных уравнения. Накрытием называется эпиморфизм  τ:Ɛ⟶ Ɛ∞ в категории дифференциальных уравнений, порождающий изоморфизм распределений. Симметрии и законы сохранения диффеотопа ࣟƐ называются нелокальными симметриями и законами сохранения уравнения ࣟƐ  Выбор подходящего накрытия позволяет получать новые (нелокальные) симметрии и законы сохранения исследуемого уравнения. В работе приведена конструкция одного накрытия и доказано существование бесконечных серий нелокальных законов сохранения у широкого класса систем дифференциальных уравнений в частных производных.системы дифференциальных уравнений в частных производных; накрытия дифференциальных уравнений; нелокальные симметрии и законы сохранения  The notion of integrability of differential equations is closely connected with the existence of symmetries and conservation laws. All known integrable differential equations have infinite series of symmetries and (or) conservation laws. However, there is also a number of equations that are important for applications, but with an extremely scarce stock of symmetries or conservation laws. Attempts to extend the concepts of symmetry and conservation law were made by different authors. This article presents the following result. If a ℓ-normal system of partial differential equations has a cohomologically nontrivial conservation law, then this conservation law generates an infinite series of non-local conservation laws. This fact generalizes the analogous result of the author for differential equations (not systems). The result is obtained within the framework of geometrical theory of partial differential equations (PDE). A manifold supplied with an infinite-dimensional distribution satisfying the Frobenius complete integrability condition is called a diffiety, if it is locally in the form of  Ɛ∞. Diffieties are objects of the category of differential equations introduced by A.M. Vinogradov. Symmetries of PDE are transformations (finite or infinitesimal) of the infinite prolongation  Ɛ∞ preserving the Cartan distribution, while conservation laws are (n-1)-cohomology classes of the horizontal de Rham cohomology. If a covering τ:Ɛ⟶ Ɛ∞ is given, then symmetries and conservation laws of the diffiety Ɛ are called nonlocal symmetries and conservation laws of the equation Ɛ .In appropriate coverings one can get new (nonlocal) symmetries and conservation laws for an equation under consideration. In this paper we investigate one covering and prove the existence of infinite series of nonlocal conservation laws.   


2009 ◽  
Vol 2009 ◽  
pp. 1-33 ◽  
Author(s):  
H. Holden ◽  
K. H. Karlsen ◽  
D. Mitrovic

We consider multidimensional conservation laws with discontinuous flux, which are regularized with vanishing diffusion and dispersion terms and with smoothing of the flux discontinuities. We use the approach ofH-measures to investigate the zero diffusion-dispersion-smoothing limit.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1760
Author(s):  
Iosif Krasil’shchik

In his 1892 paper, L. Bianchi noticed, among other things, that quite simple transformations of the formulas that describe the Bäcklund transformation of the sine-Gordon equation lead to what is called a nonlocal conservation law in modern language. Using the techniques of differential coverings, we show that this observation is of a quite general nature. We describe the procedures to construct such conservation laws and present a number of illustrative examples.


2018 ◽  
Vol 16 (1) ◽  
pp. 1519-1536
Author(s):  
Bashir Ahmad ◽  
Najla Alghamdi ◽  
Ahmed Alsaedi ◽  
Sotiris K. Ntouyas

AbstractWe introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems. We also construct some examples for demonstrating the application of the main results.


2018 ◽  
Vol 40 (1) ◽  
pp. 405-421 ◽  
Author(s):  
N Chatterjee ◽  
U S Fjordholm

Abstract We derive and study a Lax–Friedrichs-type finite volume method for a large class of nonlocal continuity equations in multiple dimensions. We prove that the method converges weakly to the measure-valued solution and converges strongly if the initial data is of bounded variation. Several numerical examples for the kinetic Kuramoto equation are provided, demonstrating that the method works well for both regular and singular data.


2000 ◽  
Vol 13 (3) ◽  
pp. 207-238 ◽  
Author(s):  
Philippe Briand ◽  
René Carmona

In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.


2020 ◽  
Vol 23 (4) ◽  
pp. 980-995
Author(s):  
Alberto Cabada ◽  
Nikolay Dimitrov

AbstractIn this paper, we introduce a two-point boundary value problem for a finite fractional difference equation with a perturbation term. By applying spectral theory, an associated Green’s function is constructed as a series of functions and some of its properties are obtained. Under suitable conditions on the nonlinear part of the equation, some existence and uniqueness results are deduced.


Sign in / Sign up

Export Citation Format

Share Document