Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates

2019 ◽  
Vol 23 (01n02) ◽  
pp. 34-45 ◽  
Author(s):  
Rodah C. Soy ◽  
Balaji Babu ◽  
David O. Oluwole ◽  
Njemuwa Nwaji ◽  
James Oyim ◽  
...  

Novel chloroindium(III) complexes of tetra(4-methylthiophenyl)porphyrin (2a) and tetra-2-thienylporphyrin (2b) dyes have been synthesized and characterized. The main goal of the project was to identify fully symmetric porphyrin dyes with Q-band regions that lie partially in the therapeutic window that are suitable for use in photodynamic therapy (PDT). 2a and 2b were found to have fluorescence quantum yield values [Formula: see text] 0.01 and moderately high singlet oxygen quantum yields (0.54−0.73) due to heavy atom effects associated with the sulfur and indium atoms. The dark toxicity and PDT activity against epithelial breast cancer cells (MCF-7) were investigated over a dose range of 3.0−40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. The in vitro dark cytotoxicity of 2a is significantly lower than that of 2b at [Formula: see text] 40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. 2a was conjugated with gold nanoparticles (AuNPs) to form a nanoconjugate (2a-AuNPs), which exhibited a higher singlet oxygen quantum yield ([Formula: see text] value and PDT activity than was observed for 2a alone. The results suggest that the AuNPs nanoconjugates of readily synthesized fully symmetric porphyrin dyes are potentially suitable for PDT applications, if meso-aryl substituents that provide scope for nanoparticle conjugation can be introduced that shift the Q bands into the therapeutic window.

2019 ◽  
Vol 3 (6) ◽  
pp. 1123-1127 ◽  
Author(s):  
Jian Shen ◽  
Jianjiao Chen ◽  
Zhen Ke ◽  
Dengfeng Zou ◽  
Liguo Sun ◽  
...  

Heavy atom free NDNT have a great potential for prostate cancer therapy both in vitro and in vivo.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 807-813 ◽  
Author(s):  
Juanjuan Chen ◽  
Yuting Fang ◽  
Hong Liu ◽  
Naisheng Chen ◽  
Shengping Chen ◽  
...  

Photodynamic therapy (PDT) is an innovative and promising modality to treat various tumors. In this study, two novel zinc(II) phthalocyanines substituted with quinolin-8-yloxy groups at the [Formula: see text]-position, namely mono(quinolin-8-yloxy) zinc(II) phthalocyanine (ZnPc-Q1) and tetra(quinolin-8-yloxy) zinc(II) phthalocyanine (ZnPc-Q4), have been synthesized and fully characterized. With quinolin-8-yloxy, these two phthalocyanines exhibit less self-aggregation in DMF and culture medium, high singlet oxygen quantum yields, mitochondria localization and high photodynamic activities (IC[Formula: see text] values as low as 2 nM). Compared to ZnPc-Q4, ZnPc-Q1 exhibits higher cellular uptake and lower IC[Formula: see text] values. Benefitting from its higher anticancer efficacy and lack of isomers, ZnPc-Q1 is a highly promising anticancer agent in clinical application.


2019 ◽  
Vol 9 (24) ◽  
pp. 5414 ◽  
Author(s):  
Sofia Friães ◽  
Eurico Lima ◽  
Renato E. Boto ◽  
Diana Ferreira ◽  
José R. Fernandes ◽  
...  

The search to replace conventional cancer treatment therapies, such as chemotherapy, radiotherapy and surgery has led over the last ten years, to a substantial effort in the development of several classes of photodynamic therapy photosensitizers with desired photophysicochemical and photobiological properties. Herein we report the synthesis of 6-iodoquinoline- and benzothiazole-based unsymmetrical squaraine cyanine dyes functionalized with amine groups located in the four-membered central ring. Their photodegradation and singlet oxygen production ability, as well as their in vitro photocytotoxicity against Caco-2 and HepG2 cell lines using a 630.8 ± 0.8 nm centered light-emitting diode system, were also investigated. All photosensitizer candidates displayed strong absorption within the tissue transparency spectral region (650–850 nm). The synthesized dyes were found to have moderate light stability. The potential of these compounds is evidenced by their cytotoxic activity against both tumor cell lines, highlighting the zwitterionic unsubstituted dye, which showed more intense photodynamic activity. Although the singlet oxygen quantum yields of these iodinated derivatives are considered low, it could be concluded that their introduction into the quinoline heterocycle was highly advantageous as it played a role in increasing selective cytotoxicity in the presence of light. Thus, the novel synthesized dyes present photophysicochemical and in vitro photobiological properties that make them excellent photosensitizer candidates for photodynamic therapy.


2018 ◽  
Vol 9 (8) ◽  
pp. 2188-2194 ◽  
Author(s):  
Jianhua Zou ◽  
Zhihui Yin ◽  
Peng Wang ◽  
Dapeng Chen ◽  
Jinjun Shao ◽  
...  

Novel photosensitizers have been developed with high 1O2 quantum yields and strong fluorescence for cancer diagnosis and PDT.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kang-Kyun Wang ◽  
Jing Li ◽  
Bong-Jin Kim ◽  
Jeong-Hyun Lee ◽  
Hee-Won Shin ◽  
...  

Pheophorbide-a derivatives have been reported to be potential photosensitizers for photodynamic therapy (PDT). In this study, photophysics of pheophorbide-a derivatives (PaDs) were investigated along with their photodynamic tumoricidal effectin vitro. PaDs were modified by changing the coil length and/or making the hydroxyl group (–OH) substitutions. Their photophysical properties were studied by steady-state and time-resolved spectroscopic methods. The photodynamic tumoricidal effect was evaluated in the mouse breast cancer cell line (EMT6). Lifetime and quantum yield of fluorescence and quantum yields of triplet state and singlet oxygen were studied to determine the dynamic energy flow. The coil length of the substituted alkyl group did not significantly affect the spectroscopic properties. However, the substitution with the hydroxyl group increased the quantum yields of the triplet state and the singlet oxygen due to the enhanced intersystem crossing. In order to check the application possibility as a photodynamic therapy agent, the PaDs with hydroxyl group were studied for the cellular affinity and the photodynamic tumoricidal effect of EMT6. The results showed that the cellular affinity and the photodynamic tumoricidal effect of PaDs with the hydroxyl group depended on the coil-length of the substituted alkyl group.


2019 ◽  
Vol 18 (2) ◽  
pp. 495-504 ◽  
Author(s):  
Susan Callaghan ◽  
Mikhail A. Filatov ◽  
Huguette Savoie ◽  
Ross W. Boyle ◽  
Mathias O. Senge

A library of heavy atom-free BODIPY-anthracene and -pyrene dyads capable of generating singlet oxygen via a PeT mechanism have been synthesized and their in vitro activity has been demonstrated.


2008 ◽  
Vol 20 (01) ◽  
pp. 9-17 ◽  
Author(s):  
Cheng-Liang Peng ◽  
Ping-Shan Lai ◽  
Ming-Jium Shieh

The asymmetric porphyrins with different substituents show various bioactivities in biomedical application. In this study, a series of asymmetric porphyrins with varying proportion of substituents, such as hydroxyphenyl and aminophenyl, were synthesized and characterized to evaluate their cell uptake, intracellular localization, cytotoxicities and phototoxicities in vitro. Among these synthesized porphyrins, 5-(4-aminophenyl)-10,15,20-tri-(4-hydroxyphenyl)-21,23H-porphyrin (porphyrin 5), which was mainly localized in mitochondria and with high quantum yields of singlet oxygen, is a potential candidate for photodynamic therapy. The effective phototoxicity of porphyrin 5 is mainly due to the higher extent in the cells and the selective mitochondria-localization. Comparing the partition coefficients of porphyrin derivatives, the best cellular uptake performs apparently with a partition coefficient (log p) ranging from about 1.7 to 1.9. In summary, higher quantum yields of singlet oxygen, and more specific mitochondrial localization of porphyrin 5 demonstrate its potential application in photodynamic therapy.


2015 ◽  
Vol 08 (01) ◽  
pp. 1540003 ◽  
Author(s):  
Li-Jun Zhang ◽  
Lai-Xing Wang ◽  
Wei-Li Zhang ◽  
Yi-Jia Yan ◽  
Zhi-Long Chen

In this study, a novel photosensitizer meso-tetra (3-pyrrolidinomethyl-4-methoxyphenyl) chlorin (TPMC) was reported. It displays a characteristic long wavelength absorption peak at 656 nm and it shows a singlet oxygen quantum yield of 0.48. After light irradiation with 650 nm laser, it can kill Eca-109 and SMMC-7721 cells in vitro (25 mW/cm2, 1.2 to 3.6 J/cm2) and destroy Eca-109 tumor in nude mice (50 mW/cm2, 90 J/cm2). It has the perspective to be developed as a new anti-tumor drug in photodynamic therapy (PDT) photodiagnosis, and deserves further investigation.


2021 ◽  
Author(s):  
◽  
Refilwe Matshitse

The syntheses and characterization of symmetric and asymmetric Pcs functionalized at the peripheral position and sometimes positively charged are reported. The Pcs had either H2, zinc or silicon as central metals and have pyridyloxy, benzothiozole phenoxy, and respective cationic analogues as ring substituents. The Pcs were linked to carbon based nanoparticles such as graphene quantum dots, carbon dots, and detonation nanodiamonds (DNDs) via an ester, amide bond and/or π - π stacking. The physicochemical characteristics of the Pcs were assessed when alone and when in a conjugated system. Both symmetrically and asymmetrically substituted benzothiozole Pcs when quaternised displayed higher triplet and singlet oxygen quantum yields than their unquaternised counterparts. Linkage to carbon nanoparticles (especially to detonation nanodiamonds) had an increasing effect on triplet and singlet oxygen quantum yield. However, a general decrease in singlet oxygen quantum yield on linkage to doped detonation nanodiamonds was associated with the screening effect of DNDs. Heteroatom doped DNDs-Pc nanohybrids have less singlet oxygen than Pcs alone due to molecular structural stability associated with strain that is relatively reduced upon linking Pcs. The In vitro dark cytotoxicity and photodynamic therapy of selected Pc complexes and conjugates against MCF-7 cells was tested. All studied Pc complexes and conjugates showed minimum dark toxicity making them applicable for PDT. When Pc complexes are alone, there is less phototoxicity with >22% cell viability at concentrations ≤ 50 μg/mL relative to conjugates with <22% cell viability at concentrations ≤ 50 μg/mL. There was no direct relationship between PDT and singlet oxygen quantum yields. Nonlinear optical characteristics of complexes was improved upon conjugation of DNDs. Absorbance, input energy, percentage loading, central metal, substituent of Pc and nature of interaction (covalent, noncovalent) are amongst some of the factors that influence nonlinear absorption properties of materials used in this study. All materials followed reverse saturable absorption through two photon absorption mechanism at the excitation wavelength of 532 nm. Aggregates reduce excited state lifetime and Beff under high concentrations/absorbance. A direct relationship between absorbance and Beff of DNDs nanoconjugated systems at low concentrations result in increased optical limiting characteristics of materials. The findings from this work show the importance of linking (nonlinear optics and photodynamic therapy) and doping (photodynamic therapy) photosensitisers such as phthalocyanines and sometimes boron dipyrromethenes onto carbon based nanoparticles for the enhanced characteristics in variable applications.


2018 ◽  
Vol 15 (2) ◽  
pp. 179-207
Author(s):  
Ashaparna Mondal ◽  
Priyankar Paira

Background: Currently ruthenium complexes are immerging as effective anticancer agents due to their less toxicity, better antiproliferative and antimetastatic activity, better stability in cellular environment and most importantly variable oxidation and co-ordination states of ruthenium allows binding this molecule with a variety of ligands. So in past few years researchers have shifted their interest towards organoruthenium complexes having good fluorescent profile that may be applicable for cancer theranostics. Nowadays, photodynamic therapy has become more acceptable because of its easy and effective approach towards killing cancer cells. Objective: Objective of this review article is to shed light on synthesis, characterization, stability and fluorescence studies of various ruthenium [Ru(II) and Ru(III)] complexes and different bioactivity studies conducted with the synthesized compounds to test their candidacy as potent chemotherapeutic agents. Methods: Various heterocyclic ligands containing N,O and S as heteroatom mainly were prepared and subjected to complexation with ruthenium-p-cymene moiety. In most cases [Ru(η6-p-cymene)(µ-Cl)Cl]2 was used as ruthenium precursor and the reactions were conducted in various alcohol medium such as methanol, ethanol or propanol. The synthesized complexes were characterized by 1H NMR and 13C NMR spectroscopy, GC-MS, ESI-MS, elemental analysis and single crystal X-ray crystallography methods. Fluorescence study and stability study were conducted accordingly using water, PBS buffer or DMSO. Stable compounds were considered for cell viability studies. To study the efficacy of the compounds in ROS generation as photosensitizers, in few cases, singlet oxygen quantum yields in presence of light were calculated. Suitable compounds were selected for in vitro & in vivo antiproliferative, anti-invasive activity studies. Result: Many newly synthesized compounds were found to have less IC50 compared to a standard drug cysplatin. Those compounds were also stable preferably in physiological conditions. Good fluorescence profile and ROS generation ability were observed for few compounds. Conclusion: Numerous ruthenium complexes were developed which can be used as cancer theranostic agents. Few molecules were synthesized as photosensitizers which were supposed to generate reactive singlet oxygen species in targeted cellular environment in presence of a particular type of light and thereby ceasing cancer cell growth.


Sign in / Sign up

Export Citation Format

Share Document