Supervised Convolutional Matrix Factorization for Document Recommendation

Author(s):  
Huiting Liu ◽  
Chao Ling ◽  
Liangquan Yang ◽  
Peng Zhao

Recently, document recommendation has become a very hot research area in online services. Since rating information is usually sparse with exploding growth of the numbers of users and items, conventional collaborative filtering-based methods degrade significantly in recommendation performance. To address this sparseness problem, auxiliary information such as item content information may be utilized. Convolution matrix factorization (ConvMF) is an appealing method, which tightly combines the rating and item content information. Although ConvMF captures contextual information of item content by utilizing convolutional neural network (CNN), the latent representation may not be effective when the rating information is very sparse. To address this problem, we generalize recent advances in supervised CNN and propose a novel recommendation model called supervised convolution matrix factorization (Super-ConvMF), which effectively combines the rating information, item content information and tag information into a unified recommendation framework. Experiments on three real-world datasets, two datasets come from MovieLens and the other one is from Amazon, show our model outperforms the state-of-the-art competitors in terms of the whole range of sparseness.

2019 ◽  
Vol 30 (2) ◽  
pp. 27-43
Author(s):  
Zhicheng Wu ◽  
Huafeng Liu ◽  
Yanyan Xu ◽  
Liping Jing

According to the sparseness of rating information, the quality of recommender systems has been greatly restricted. In order to solve this problem, much auxiliary information has been used, such as social networks, review information, and item description. Convolutional neural networks (CNNs) have been widely employed by recommender systems, it greatly improved the rating prediction's accuracy especially when combined with traditional recommendation methods. However, a large amount of research focuses on the consistency between the rating-based latent factor and review-based latent factor. But in fact, these two parts are completely different. In this article, the authors propose a model named collaboration matrix factorization (CMF) that combines a projection method with a convolutional matrix factorization (ConvMF) to extract the collaboration between rating-based latent factors and review-based latent factors that comes from the results of the CNN process. Extensive experiments on three real-world datasets show that the projection method achieves significant improvements over the existing baseline.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Chenwei Cai ◽  
Ruining He ◽  
Julian McAuley

Dealing with sparse, long-tailed datasets, and cold-start problems is always a challenge for recommender systems. These issues can partly be dealt with by making predictions not in isolation, but by leveraging information from related events; such information could include signals from social relationships or from the sequence of recent activities. Both types of additional information can be used to improve the performance of state-of-the-art matrix factorization-based techniques. In this paper, we propose new methods to combine both social and sequential information simultaneously, in order to further improve recommendation performance. We show these techniques to be particularly effective when dealing with sparsity and cold-start issues in several large, real-world datasets.


Author(s):  
Nhat Le ◽  
Khanh Nguyen ◽  
Anh Nguyen ◽  
Bac Le

AbstractHuman emotion recognition is an active research area in artificial intelligence and has made substantial progress over the past few years. Many recent works mainly focus on facial regions to infer human affection, while the surrounding context information is not effectively utilized. In this paper, we proposed a new deep network to effectively recognize human emotions using a novel global-local attention mechanism. Our network is designed to extract features from both facial and context regions independently, then learn them together using the attention module. In this way, both the facial and contextual information is used to infer human emotions, therefore enhancing the discrimination of the classifier. The intensive experiments show that our method surpasses the current state-of-the-art methods on recent emotion datasets by a fair margin. Qualitatively, our global-local attention module can extract more meaningful attention maps than previous methods. The source code and trained model of our network are available at https://github.com/minhnhatvt/glamor-net.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-Yu Huang ◽  
Xian-Hong Xiang ◽  
Wubin Li ◽  
Kang Chen ◽  
Wen-Xue Cai ◽  
...  

We study a matrix factorization problem, that is, to find two factor matricesUandVsuch thatR≈UT×V, whereRis a matrix composed of the values of the objectsO1,O2,…,Onat consecutive time pointsT1,T2,…,Tt. We first present MAFED, a constrained optimization model for this problem, which straightforwardly performs factorization onR. Then based on the interplay of the data inU,V, andR, a probabilistic graphical model using the same optimization objects is constructed, in which structural dependencies of the data in these matrices are revealed. Finally, we present a fitting algorithm to solve the proposed MAFED model, which produces the desired factorization. Empirical studies on real-world datasets demonstrate that our approach outperforms the state-of-the-art comparison algorithms.


2021 ◽  
Vol 4 ◽  
Author(s):  
Dachun Sun ◽  
Chaoqi Yang ◽  
Jinyang Li ◽  
Ruijie Wang ◽  
Shuochao Yao ◽  
...  

The paper extends earlier work on modeling hierarchically polarized groups on social media. An algorithm is described that 1) detects points of agreement and disagreement between groups, and 2) divides them hierarchically to represent nested patterns of agreement and disagreement given a structural guide. For example, two opposing parties might disagree on core issues. Moreover, within a party, despite agreement on fundamentals, disagreement might occur on further details. We call such scenarios hierarchically polarized groups. An (enhanced) unsupervised Non-negative Matrix Factorization (NMF) algorithm is described for computational modeling of hierarchically polarized groups. It is enhanced with a language model, and with a proof of orthogonality of factorized components. We evaluate it on both synthetic and real-world datasets, demonstrating ability to hierarchically decompose overlapping beliefs. In the case where polarization is flat, we compare it to prior art and show that it outperforms state of the art approaches for polarization detection and stance separation. An ablation study further illustrates the value of individual components, including new enhancements.


Author(s):  
Teng Xiao ◽  
Shangsong Liang ◽  
Weizhou Shen ◽  
Zaiqiao Meng

In this paper, we propose a Bayesian Deep Collaborative Matrix Factorization (BDCMF) algorithm for collaborative filtering (CF). BDCMF is a novel Bayesian deep generative model that learns user and item latent vectors from users’ social interactions, contents of items as the auxiliary information and user-item rating (feedback) matrix. It alleviates the problem of matrix sparsity by incorporating items’ auxiliary and users’ social information into the model. It can learn more robust and dense latent representations by integrating deep learning into Bayesian probabilistic framework. As being one of deep generative models, it has both non-linearity and Bayesian nature. Additionally, in BDCMF, we derive an efficient EM-style point estimation algorithm for parameter learning. To further improve recommendation performance, we also derive a full Bayesian posterior estimation algorithm for inference. Experiments conducted on two sparse datasets show that BDCMF can significantly outperform the state-of-the-art CF methods.


2021 ◽  
Vol 11 (19) ◽  
pp. 8830
Author(s):  
Shoujin Wang ◽  
Wanggen Wan ◽  
Tong Qu ◽  
Yanqiu Dong

Sequential recommendations have attracted increasing attention from both academia and industry in recent years. They predict a given user’s next choice of items by mainly modeling the sequential relations over a sequence of the user’s interactions with the items. However, most of the existing sequential recommendation algorithms mainly focus on the sequential dependencies between item IDs within sequences, while ignoring the rich and complex relations embedded in the auxiliary information, such as items’ image information and textual information. Such complex relations can help us better understand users’ preferences towards items, and thus benefit from the recommendations. To bridge this gap, we propose an auxiliary information-enhanced sequential recommendation algorithm called memory fusion network for recommendation (MFN4Rec) to incorporate both items’ image and textual information for sequential recommendations. Accordingly, item IDs, item image information and item textual information are regarded as three modalities. By comprehensively modelling the sequential relations within modalities and interaction relations across modalities, MFN4Rec can learn a more informative representation of users’ preferences for more accurate recommendations. Extensive experiments on two real-world datasets demonstrate the superiority of MFN4Rec over state-of-the-art sequential recommendation algorithms.


Author(s):  
Jingtao Ding ◽  
Guanghui Yu ◽  
Xiangnan He ◽  
Yuhan Quan ◽  
Yong Li ◽  
...  

Most existing recommender systems leverage the primary feedback data only, such as the purchase records in E-commerce. In this work, we additionally integrate view data into implicit feedback based recommender systems (dubbed as Implicit Recommender Systems). We propose to model the pairwise ranking relations among purchased, viewed, and non-viewed interactions, being more effective and flexible than typical pointwise matrix factorization (MF) methods. However, such a pairwise formulation poses efficiency challenges in learning the model. To address this problem, we design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) learner. Notably, our algorithm can efficiently learn model parameters from the whole user-item matrix (including all missing data), with a rather low time complexity that is dependent on the observed data only. Extensive experiments on two real-world datasets demonstrate that our method outperforms several state-of-the-art MF methods by 10% ∼ 28.4%. Our implementation is available at: https://github.com/ dingjingtao/View_enhanced_ALS.


Author(s):  
Feng Zhu ◽  
Yan Wang ◽  
Chaochao Chen ◽  
Guanfeng Liu ◽  
Xiaolin Zheng

The conventional single-target Cross-Domain Recommendation (CDR) only improves the recommendation accuracy on a target domain with the help of a source domain (with relatively richer information). In contrast, the novel dual-target CDR has been proposed to improve the recommendation accuracies on both domains simultaneously. However, dual-target CDR faces two new challenges: (1) how to generate more representative user and item embeddings, and (2) how to effectively optimize the user/item embeddings on each domain. To address these challenges, in this paper, we propose a graphical and attentional framework, called GA-DTCDR. In GA-DTCDR, we first construct two separate heterogeneous graphs based on the rating and content information from two domains to generate more representative user and item embeddings. Then, we propose an element-wise attention mechanism to effectively combine the embeddings of common users learned from both domains. Both steps significantly enhance the quality of user and item embeddings and thus improve the recommendation accuracy on each domain. Extensive experiments conducted on four real-world datasets demonstrate that GA-DTCDR significantly outperforms the state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document