scholarly journals Bayesian Deep Collaborative Matrix Factorization

Author(s):  
Teng Xiao ◽  
Shangsong Liang ◽  
Weizhou Shen ◽  
Zaiqiao Meng

In this paper, we propose a Bayesian Deep Collaborative Matrix Factorization (BDCMF) algorithm for collaborative filtering (CF). BDCMF is a novel Bayesian deep generative model that learns user and item latent vectors from users’ social interactions, contents of items as the auxiliary information and user-item rating (feedback) matrix. It alleviates the problem of matrix sparsity by incorporating items’ auxiliary and users’ social information into the model. It can learn more robust and dense latent representations by integrating deep learning into Bayesian probabilistic framework. As being one of deep generative models, it has both non-linearity and Bayesian nature. Additionally, in BDCMF, we derive an efficient EM-style point estimation algorithm for parameter learning. To further improve recommendation performance, we also derive a full Bayesian posterior estimation algorithm for inference. Experiments conducted on two sparse datasets show that BDCMF can significantly outperform the state-of-the-art CF methods.

Author(s):  
Huiting Liu ◽  
Chao Ling ◽  
Liangquan Yang ◽  
Peng Zhao

Recently, document recommendation has become a very hot research area in online services. Since rating information is usually sparse with exploding growth of the numbers of users and items, conventional collaborative filtering-based methods degrade significantly in recommendation performance. To address this sparseness problem, auxiliary information such as item content information may be utilized. Convolution matrix factorization (ConvMF) is an appealing method, which tightly combines the rating and item content information. Although ConvMF captures contextual information of item content by utilizing convolutional neural network (CNN), the latent representation may not be effective when the rating information is very sparse. To address this problem, we generalize recent advances in supervised CNN and propose a novel recommendation model called supervised convolution matrix factorization (Super-ConvMF), which effectively combines the rating information, item content information and tag information into a unified recommendation framework. Experiments on three real-world datasets, two datasets come from MovieLens and the other one is from Amazon, show our model outperforms the state-of-the-art competitors in terms of the whole range of sparseness.


Author(s):  
Abdul Fatir Ansari ◽  
Harold Soh

We address the problem of unsupervised disentanglement of latent representations learnt via deep generative models. In contrast to current approaches that operate on the evidence lower bound (ELBO), we argue that statistical independence in the latent space of VAEs can be enforced in a principled hierarchical Bayesian manner. To this effect, we augment the standard VAE with an inverse-Wishart (IW) prior on the covariance matrix of the latent code. By tuning the IW parameters, we are able to encourage (or discourage) independence in the learnt latent dimensions. Extensive experimental results on a range of datasets (2DShapes, 3DChairs, 3DFaces and CelebA) show our approach to outperform the β-VAE and is competitive with the state-of-the-art FactorVAE. Our approach achieves significantly better disentanglement and reconstruction on a new dataset (CorrelatedEllipses) which introduces correlations between the factors of variation.


Author(s):  
Dazhong Shen ◽  
Chuan Qin ◽  
Chao Wang ◽  
Hengshu Zhu ◽  
Enhong Chen ◽  
...  

As one of the most popular generative models, Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference. However, when the decoder network is sufficiently expressive, VAE may lead to posterior collapse; that is, uninformative latent representations may be learned. To this end, in this paper, we propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space, and thus the representation can be learned in a meaningful and compact manner. Specifically, we first theoretically demonstrate that it will result in better latent space with high diversity and low uncertainty awareness by controlling the distribution of posterior’s parameters across the whole data accordingly. Then, without the introduction of new loss terms or modifying training strategies, we propose to exploit Dropout on the variances and Batch-Normalization on the means simultaneously to regularize their distributions implicitly. Furthermore, to evaluate the generalization effect, we also exploit DU-VAE for inverse autoregressive flow based-VAE (VAE-IAF) empirically. Finally, extensive experiments on three benchmark datasets clearly show that our approach can outperform state-of-the-art baselines on both likelihood estimation and underlying classification tasks.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Majid Yekkehfallah ◽  
Ming Yang ◽  
Zhiao Cai ◽  
Liang Li ◽  
Chuanxiang Wang

SUMMARY Localization based on visual natural landmarks is one of the state-of-the-art localization methods for automated vehicles that is, however, limited in fast motion and low-texture environments, which can lead to failure. This paper proposes an approach to solve these limitations with an extended Kalman filter (EKF) based on a state estimation algorithm that fuses information from a low-cost MEMS Inertial Measurement Unit and a Time-of-Flight camera. We demonstrate our results in an indoor environment. We show that the proposed approach does not require any global reflective landmark for localization and is fast, accurate, and easy to use with mobile robots.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-24
Author(s):  
Lei Chen ◽  
Zhiang Wu ◽  
Jie Cao ◽  
Guixiang Zhu ◽  
Yong Ge

Author(s):  
Wei Peng ◽  
Baogui Xin

AbstractA recommendation can inspire potential demands of users and make e-commerce platforms more intelligent and is essential for e-commerce enterprises’ sustainable development. The traditional social recommendation algorithm ignores the following fact: the preferences of users with trust relationships are not necessarily similar, and the consideration of user preference similarity should be limited to specific areas. To solve these problems mentioned above, we propose a social trust and preference segmentation-based matrix factorization (SPMF) recommendation algorithm. Experimental results based on the Ciao and Epinions datasets show that the accuracy of the SPMF algorithm is significantly superior to that of some state-of-the-art recommendation algorithms. The SPMF algorithm is a better recommendation algorithm based on distinguishing the difference of trust relations and preference domain, which can support commercial activities such as product marketing.


Sign in / Sign up

Export Citation Format

Share Document