Thermal Modeling of Disc Brake Rotor in Frictional Contact

2013 ◽  
Vol 05 (03) ◽  
pp. 1350013 ◽  
Author(s):  
Belhocine Ali ◽  
Nouby Mahdi Ghazaly

Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.

2014 ◽  
Vol 11 (4) ◽  
pp. 373-390 ◽  
Author(s):  
A. Belhocine ◽  
M. Bouchetara ◽  
Ar. Bakar ◽  
M. Nouby

Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.


2014 ◽  
Vol 11 (5) ◽  
pp. 457-472 ◽  
Author(s):  
A. Belhocine ◽  
M. Bouchetara ◽  
A. Bakar ◽  
M. Nouby

Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor. The analysis also gives us, the heat flux distribution for the two discs.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Sugunarani S ◽  
Santhosh V

This work deals with the analysis of heat generation and dissipation in the disc brake of a car during braking and the following release period by using computer-aided engineering software for three different materials of the rotor disc and brake pad. The objective of this work is to analyze the temperature distribution of rotor disc during operation using COMSOL Multiphysics. The work uses the finite element analysis techniques to calculate and predict the temperature distribution on the brake disc and to identify the critical temperature of the brake rotor disc. Conduction, convection and radiation of heat transfer have been analyzed. The results obtained from the analysis indicates that different material on the same retardation of the car during braking shows different temperature distribution. A comparative study was made between grey cast iron (GCI), Aluminium Metal Matrix Composite (AMMC), Alloy steel materials are used for brake disc and the best material for making brake disc based on the rate of heat dissipation have been suggested.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


2012 ◽  
Vol 468-471 ◽  
pp. 3108-3112
Author(s):  
Hai Du ◽  
Yan Bin Qu

A novel dynamic electromagnetic induction heater for water treatment system is introduced in this paper, and its structure and operation mechanism is given. The heater converts input mechanical energy into various forms of heat energy completely, including the hyseresis loss, eddy current loss, copper loss and so on, and the mathematical model of loss is established based on fundamental electromagnetic field theory. By the finite element analysis, the above three kinds of loss are calculated at different rotation speed, as well as each of the percentage of total loss. At last, the temperature field and heat flux distribution of heater are calculated.


1992 ◽  
Vol 114 (2) ◽  
pp. 317-325 ◽  
Author(s):  
J. Fransaer ◽  
J. R. Roos

An analytical solution, which describes the temperature field around a single spherical particle partly embedded in a plane or around a trough making an arbitrary contact angle with a plane, is presented here. The temperature distributions for three cases are studied: the temperature distribution around a conducting bowl or trough, the temperature distribution around a non-conducting bowl or trough present in a conducting plane, and the temperature profile around a conducting bowl or trough conducting heat toward a sink at infinity. The normalized heat flux distribution on the plane and particle is presented. The various incremental resistances caused by a single and a dilute planar random array of truncated spherical particles are also derived.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (6) ◽  
pp. 303-316
Author(s):  
KUNAL KUMAR ◽  
VILJAMI MAAKALA ◽  
VILLE VUORINEN

Superheaters are the last heat exchangers on the steam side in recovery boilers. They are typically made of expensive materials due to the high steam temperature and risks associated with ash-induced corrosion. Therefore, detailed knowledge about the steam properties and material temperature distribution is essential for improving the energy efficiency, cost efficiency, and safety of recovery boilers. In this work, for the first time, a comprehensive one-dimensional (1D) process model (1D-PM) for a superheated steam cycle is developed and linked with a full-scale three-dimensional (3D) computational fluid dynamics (CFD) model of the superheater region flue gas flow. The results indicate that: (1) the geometries of headers and superheater platens affect platen-wise steam mass flow rate distribution (3%–7%); and (2) the CFD solution of the 3D flue gas flow field and platen heat flux distribution coupled with the 1D-PM affect the platen-wise steam superheating temperature (45%–122%) and material temperature distribution (1%–6%). Moreover, it is also found that the commonly-used uniform heat flux distribution approach for the superheating process is not accurate, as it does not consider the effect of flue gas flow field in the superheater region. These new observations clearly demonstrate the value of the present integrated CFD/1D-PM modeling approach.


Author(s):  
R. Adibi-Asl ◽  
D. O’Kane ◽  
E. Chen

Abstract Thermal ratcheting is required to be checked by most of the piping design codes, specifically the ASME B&PV Code. For cases where the variation of temperature distribution is not uniform, the existing ratchet check methodology for piping is inadequate and therefore the finite element analysis (FEA) is often used to perform ratchet checks. Thermal stratification, in which cold and hot fluid flows are layered in a relatively steady state condition, is a good example of non-linear/non-uniform temperature distribution across the pipe. This paper develops straightforward equations to address thermal stratification in piping. Finite element analysis is used to benchmark the results.


Sign in / Sign up

Export Citation Format

Share Document