Effects of Magnetic Fields on PN Junctions in Piezomagnetic–Piezoelectric Semiconductor Composite Fibers

2020 ◽  
Vol 12 (08) ◽  
pp. 2050085
Author(s):  
Chao Liang ◽  
Chunli Zhang ◽  
Weiqiu Chen ◽  
Jiashi Yang

We study the electromechanical and electrical behaviors of a PN junction in a multiferroic composite fiber, consisting of a piezoelectric semiconductor (PS) layer between two piezomagnetic (PM) layers, under a transverse magnetic field. Based on the derived one-dimensional model for multiferroic composite semiconductor structures, we obtain the linear analytical solution for the built-in potential and electric field in the junction when there is no applied voltage between the two ends of the fiber. When a bias voltage is applied over the two ends of the fiber, a nonlinear numerical analysis is performed for the current–voltage relation. Both a homogeneous junction with a uniform PS layer and a heterogeneous junction with two different PSs on different sides of the junctions are studied. It is found that overall the homogeneous junction is essentially unaffected by the magnetic field, and the heterojunction is sensitive to the magnetic field with potential applications in piezotronics.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


2020 ◽  
Vol 90 (3) ◽  
pp. 482
Author(s):  
Н.М. Горшунов ◽  
Е.П. Потанин

Equations are obtained that describe the characteristics of the azimuthal motion and radial expansion of a plasma jet under the action of a rotating transverse magnetic field of a dipole configuration in a longitudinal static magnetic field. The analysis was carried out both in the multicomponent approximation and on the basis of MHD equations taking into account the Hall effect. Based on the obtained dependences of the azimuthal and radial ion velocities on the magnetic field values, the separation characteristics of the direct-flow plasma centrifuge are estimated for the separation of a two-component binary mixture simulating spent nuclear fuel. It was shown that the concentration of the heavy uranium-plutonium component in the product flow can be increased from the initial 96 to 99.8% with a fuel component extraction of 0.87.


2018 ◽  
Vol 16 (6) ◽  
pp. 385-390
Author(s):  
Shikha BINWAL ◽  
Jay K JOSHI ◽  
Shantanu Kumar KARKARI ◽  
Predhiman Krishan KAW ◽  
Lekha NAIR ◽  
...  

A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed.  With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.


Author(s):  
И.А. Беляев ◽  
Д.А. Бирюков ◽  
А.В. Котляр ◽  
Е.А. Белавина ◽  
П.А. Сардов ◽  
...  

The results of an experimental study of the salt melt downflow in a uniformly heated pipe under the influence of a strong transverse magnetic field are presented. The changes of heat transfer coefficients and statistical characteristics of temperature fluctuations under the influence of the magnetic field are investigated. The peculiarities of the transition of the viscous-gravitational flow in the viscous-inertial-gravitational flow at Reynolds numbers (Re=3000-5000) under the influence of the magnetic field (Ha=17) were studied.


2021 ◽  
Vol 62 ◽  
pp. 386-405
Author(s):  
Graham John Weir ◽  
George Chisholm ◽  
Jerome Leveneur

Neodymium magnets were independently discovered in 1984 by General Motors and Sumitomo. Today, they are the strongest type of permanent magnets commercially available. They are the most widely used industrial magnets with many applications, including in hard disk drives, cordless tools and magnetic fasteners. We use a vector potential approach, rather than the more usual magnetic potential approach, to derive the three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized block geometry and uniform magnetization. For each field or observation point, the 3D solution involves 24 nondimensional quantities, arising from the eight vertex positions of the magnet and the three components of the magnetic field. The only unknown in the model is the value of magnetization, with all other model quantities defined in terms of field position and magnet location. The longitudinal magnetic field component in the direction of magnetization is bounded everywhere, but discontinuous across the magnet faces parallel to the magnetization direction. The transverse magnetic fields are logarithmically unbounded on approaching a vertex of the magnet.   doi:10.1017/S1446181120000097


Sign in / Sign up

Export Citation Format

Share Document