Numerical Investigation on Mixed Mode (I-II) Fracture Propagation of CCBD Specimens Under Confining Pressure

Author(s):  
Jiuzhou Huang ◽  
Jianxiong Li ◽  
Xin Pan ◽  
Tianzhou Xie ◽  
Wen Hua ◽  
...  

A new numerical method, verified by the analytical solution of the weight functions and experimental paths, is developed to evaluate the crack initiation and propagation generally in mixed mode (I-II). This numerical method combining the interaction integral method and the maximum tangential stress (MTS) criterion is based on the finite element method of secondary development. The influence of combined confining pressure and diametric forces on crack propagation trajectories for CCBD specimens are studied. It is indicated that the crack propagation direction independent of the confining pressure keeps the same with the line of original crack as the loading angle is equal to [Formula: see text]. But when the loading angle is greater than [Formula: see text], the curvature of the curve trajectory in the early stage of crack propagation increases with a larger confining pressure. Further, it is found that larger values of the loading angle and relative length will make the effect of confining pressure more significant at the early stage of crack growth.

2013 ◽  
Vol 139 (11) ◽  
pp. 1530-1538 ◽  
Author(s):  
ZhiMin Wu ◽  
Hua Rong ◽  
JianJun Zheng ◽  
Wei Dong

2020 ◽  
Vol 10 (20) ◽  
pp. 7149
Author(s):  
Fei Wang ◽  
Zheming Zhu ◽  
Meng Wang ◽  
Hao Qiu ◽  
Lei Zhou ◽  
...  

Mixed-mode fracture of construction building materials under impact loading is quite common in civil engineering. The investigation of mixed-mode crack propagation behavior is an essential work for fundamental research and engineering application. A variable angle single cleavage semi-circle (VASCSC) specimen was proposed with which the dynamic fracture test was conducted by using a Split-Hopkinson pressure bar (SHPB). Notably, the mixed-mode crack propagation velocity could be detected by the synchronized crack velocity measuring system. With experimental results, the dynamic initiation stress intensity factors KI and KII were calculated by the experimental-numerical method. Additionally, the crack path of mixed-mode I/II fracture can be predicated precisely by using numerical method. Thus, a comprehensive approach of investigation on mixed-mode I/II fracture under impact loading was illustrated in this paper. The study demonstrates that the mixed-mode I/II crack would transform from complicated mode I/II to pure mode I during crack propagation, and several velocity decelerations induced crack deflection. The dynamic initiation fracture toughness of mixed-mode crack was determined by the experimental-numerical method. The VASCSC specimen has a great potential in investigating mixed-mode fracture problems with the SHPB device.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


Author(s):  
Jun He ◽  
Shuling Huang ◽  
Xiuli Ding ◽  
Yuting Zhang ◽  
Dengxue Liu

Crack initiation and propagation are the two key issues of concern in the geotechnical engineering. In this study, the numerical manifold method (NMM) is applied to simulate crack propagation and the topology update of the NMM for multiple crack propagation is studied. The crack-tip asymptotic interpolation function is incorporated into the NMM to increase the accuracy of the crack-tip stress field. In addition, the Mohr-Coulomb criterion with tensile cut off is adopted to be the crack propagation criterion to judge the direction of crack initiation and propagation. Then a crack tip searching method is developed to automatically update the position of the crack tips. The inapplicability of the original loop search method in the NMM is also illustrated and a novel loop search method based on manifold elements is developed for physical loop updating. Moreover, methods for the manifold element updating and physical cover updating are provided. Based on the above study, the developed numerical method is capable to simulate multiple crack propagation. At last, typical rock rupture problems are numerically simulated to manifest the effectiveness of the developed numerical method.


2020 ◽  
Vol 10 (12) ◽  
pp. 4227
Author(s):  
Yali Yang ◽  
Seok Jae Chu ◽  
Wei song Huang ◽  
Hao Chen

The evaluation of energy release rate with angle is still a challenging task in metal crack propagation analysis, especially for the mixed Mode I-II-III loading situation. In this paper, the energy release rate associated with stress intensity factors at an arbitrary angle under mixed mode loadings has been investigated using both a numerical method and theoretical derivation. A relatively simple and precise numerical method was established through a series of spatial-inclined ellipses in Mode I-II and ellipsoids in Mode I-II-III, with different propagation angles computed from simulation. Meanwhile, a theoretical expression of the energy release rate with angle for a crack tip under a I-II-III mixed mode crack was deduced based on the propagation mechanism of the crack tip under the influence of a stress field. It is confirmed that the theoretical expression deduced could provide results as accurately as the present numerical method. The present results were confirmed to be effective and accurate by comparison with experimental data and other literature.


Sign in / Sign up

Export Citation Format

Share Document