scholarly journals Interfacial Confinement in Semi-Crystalline Shape Memory Polymer Towards Sequentially Dynamic Relaxations

Author(s):  
Jingyun Liu ◽  
Ziyu Xing ◽  
Haibao Lu ◽  
Yong-Qing Fu

Sequential glass and melting transitions in semi-crystalline shape memory polymers (SMPs) provide great opportunities to design and generate multiple shape-memory effects (SMEs) for practical applications. However, the complexly dynamic confinements of coexisting amorphous and crystalline phases within the semi-crystalline SMPs are yet fully understood. In this study, an interfacial confinement model is formulated to describe dynamic relaxation and shape memory behavior in the semi-crystalline SMPs undergoing sequential phase/state transitions. A confinement entropy model is first established to describe the glass transition behavior of amorphous phase within the SMPs based on the free volume theory, where the free volume is critically confined by the crystalline phase. An extended Avrami model is then formulated using the frozen volume theory to characterize the melting and crystallization transitions of the crystalline phase in the SMPs, whose interfacial confinement with the amorphous phase has been identified as the driving force for the supercooled regime. Furthermore, an extended Maxwell model is formulated to describe the effect of dynamic confinement of two phases on the multiple SMEs and shape recovery behaviors in the semi-crystalline SMPs. Finally, the effectiveness of the newly proposed model is verified using the experimental data reported in the literature. This study aims to provide a new methodology for the dynamic confinements and cooperative principles in the semi-crystalline SMP towards multiple SMEs.

2005 ◽  
Vol 475-479 ◽  
pp. 2399-2402 ◽  
Author(s):  
Xili Lu ◽  
Wei Cai ◽  
Lian Cheng Zhao

Poly(L-lactide) (PLLA) was synthesized by the ring-opening polymerization of L-lactide and the shape memory behavior was studied using DSC and bending test experiments. The results indicate that the specimen shows the shape memory effect (SME), the small crystalline phase of PLLA and the mobility of amorphous phase may be responsible for the SME. The shape recovery of samples decreases and approaches to steady with the testing number increases.


Author(s):  
Т. М. Мельниченко ◽  
Т. Д. Мельниченко ◽  
Я. Я. Коцак ◽  
Я. П. Куценко ◽  
П. П. Пуга

Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


1989 ◽  
Vol 111 (1) ◽  
pp. 121-128 ◽  
Author(s):  
C. S. Wu ◽  
E. E. Klaus ◽  
J. L. Duda

A simple method based on free-volume theory to predict the pressure-viscosity coefficients of liquid lubricants has been developed. The method only requires the viscosity-temperature relationship and the viscosity at the temperature of interest. The method provides good accuracy when it was tested for 162 data points for various fluid types over wide ranges of temperature and viscosity.


The crystalline morphologies that are attainable in samples of natural rubber (n. r.), by extending the samples prior to crystallization, are reviewed. Specimens covering the full range of crystalline morphologies possible have been prepared and tensile tested between – 120 and – 26 °C. The tensile behaviour of crystalline samples is compared and contrasted with that of oriented, but non-crystalline, identical natural rubber in the same temperature range. It is found that the tensile behaviour of semi-crystalline n. r. is dominated by the amorphous phase throughout the temperature range – 120 to – 26 °C. At temperatures above the glass transition temperature ( T g ) of the amorphous phase, the crystalline phase acts mainly as a diluent of the amorphous phase. At temperatures below T g , where the crystalline phase is set in a glassy matrix, it is found that the crystalline morphology does significantly affect the tensile behaviour. Attempts are made to differentiate the effects of crystallinity, crystalline morphology and orientation of the amorphous phase on the tensile properties of natural rubber.


2018 ◽  
Vol 38 (10) ◽  
pp. 925-931 ◽  
Author(s):  
Derek R. Sturm ◽  
Kevin J. Caputo ◽  
Siyang Liu ◽  
Ronald P. Danner

Abstract Diffusion of penetrants in polyethylene below the melt temperature is heavily dependent on the crystallinity of the polyethylene, the temperature of the experiment, and the concentration of solvent in the polymer. As the crystallinity of the polyethylene increases, there is an increase in the path that the solvent must travel as the solvent cannot penetrate the tightly packed chains in the crystalline domain. This effect is typically accounted for by a tortuosity factor. In this work, a simple and effective characterization of the tortuosity factor based simply on the crystal weight fraction has been developed. Data have been collected for six polyethylenes having densities ranging from 0.912 to 0.961 g/cm3 and for three solvents – isopentane, cyclohexane, and 1-hexene. Diffusivity predictions have been obtained using the free-volume theory of Vrentas and Duda in conjunction with the new tortuosity factor. The polyethylenes had crystallinities varying from 40% to 82% effecting an approximately 60% change in the diffusivity. The decrease resulting from ignoring the crystallinity altogether was in some cases essentially a factor of 5. The error in the predicted diffusivities over all the systems was 25%. For cyclohexane, it is shown that the same model parameters characterize data below the melt temperature (in the semi-crystalline region) as well as above the melt temperature (in the amorphous region).


Sign in / Sign up

Export Citation Format

Share Document