scholarly journals A lower bound for the Hausdorff dimension of the set of weighted simultaneously approximable points over manifolds

Author(s):  
Victor Beresnevich ◽  
Jason Levesley ◽  
Ben Ward

Given a weight vector [Formula: see text] with each [Formula: see text] bounded by certain constraints, we obtain a lower bound for the Hausdorff dimension of the set [Formula: see text], where [Formula: see text] is a twice continuously differentiable manifold. From this we produce a lower bound for [Formula: see text] where [Formula: see text] is a general approximation function with certain limits. The proof is based on a technique developed by Beresnevich et al. in 2017, but we use an alternative mass transference style theorem proven by Wang, Wu and Xu (2015) to obtain our lower bound.

2017 ◽  
Vol 39 (3) ◽  
pp. 638-657 ◽  
Author(s):  
TUSHAR DAS ◽  
LIOR FISHMAN ◽  
DAVID SIMMONS ◽  
MARIUSZ URBAŃSKI

We highlight a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. For self-affine sponges with equal Hausdorff and dynamical dimensions, the set of badly approximable points has full Hausdorff dimension in the sponge. Our results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets. We use the fact that the lower Assouad dimension of a hyperplane diffuse set constitutes a lower bound for the Hausdorff dimension of the set of badly approximable points in that set.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Moez Ben Abid ◽  
Mourad Ben Slimane ◽  
Ines Ben Omrane ◽  
Borhen Halouani

The t-multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the t-spectrum of a function f from the knowledge of the (p,t)-oscillation exponent of f. The t-spectrum is the Hausdorff dimension of the set of points where f has a given value of pointwise Lt regularity. The (p,t)-oscillation exponent is measured by determining to which oscillation spaces Op,ts (defined in terms of wavelet coefficients) f belongs. In this paper, we first prove embeddings between oscillation and Besov-Sobolev spaces. We deduce a general lower bound for the (p,t)-oscillation exponent. We then show that this lower bound is actually equality generically, in the sense of Baire’s categories, in a given Sobolev or Besov space. We finally investigate the Baire generic validity of the t-multifractal formalism.


2013 ◽  
Vol 209 ◽  
pp. 1-22 ◽  
Author(s):  
Shouhei Honda

AbstractWe call a Gromov–Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. Furthermore, we prove that any Ricci limit space has integral Hausdorff dimension, provided that its Hausdorff dimension is not greater than 2. We also classify 1-dimensional Ricci limit spaces.


2018 ◽  
Vol 167 (02) ◽  
pp. 249-284 ◽  
Author(s):  
YANN BUGEAUD ◽  
YITWAH CHEUNG ◽  
NICOLAS CHEVALLIER

AbstractIn this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponentμin (1/2, 1) is equal to 2(1 −μ) forμ⩾$\sqrt2/2$, whereas forμ<$\sqrt2/2$it is greater than 2(1 −μ) and at most equal to (3 − 2μ)(1 − μ)/(1 −μ+μ2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) whenμtends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for μ ⩾ 0.565. . . .


Fractals ◽  
2016 ◽  
Vol 24 (04) ◽  
pp. 1650039 ◽  
Author(s):  
MOURAD BEN SLIMANE ◽  
ANOUAR BEN MABROUK ◽  
JAMIL AOUIDI

Mixed multifractal analysis for functions studies the Hölder pointwise behavior of more than one single function. For a vector [Formula: see text] of [Formula: see text] functions, with [Formula: see text], we are interested in the mixed Hölder spectrum, which is the Hausdorff dimension of the set of points for which each function [Formula: see text] has exactly a given value [Formula: see text] of pointwise Hölder regularity. We will conjecture a formula which relates the mixed Hölder spectrum to some mixed averaged wavelet quantities of [Formula: see text]. We will prove an upper bound valid for any vector of uniform Hölder functions. Then we will prove the validity of the conjecture for self-similar vectors of functions, quasi-self-similar vectors and their superpositions. These functions are written as the superposition of similar structures at different scales, reminiscent of some possible modelization of turbulence or cascade models. Their expressions look also like wavelet decompositions.


2015 ◽  
Vol 158 (3) ◽  
pp. 419-437 ◽  
Author(s):  
BAO-WEI WANG ◽  
JUN WU ◽  
JIAN XU

AbstractWe generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} where a = (a1, . . ., ad) with 1 ⩽ a1 ⩽ a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.


Mathematika ◽  
1990 ◽  
Vol 37 (1) ◽  
pp. 59-73 ◽  
Author(s):  
M. M. Dodson ◽  
B. P. Rynne ◽  
J. A. G. Vickers

Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 137-148
Author(s):  
PÉTER MÓRA

It is well-known that the Hausdorff dimension of the Sierpinski triangle Λ is s = log 3/ log 2. However, it is a long standing open problem to compute the s-dimensional Hausdorff measure of Λ denoted by [Formula: see text]. In the literature the best existing estimate is [Formula: see text] In this paper we improve significantly the lower bound. We also give an upper bound which is weaker than the one above but everybody can check it easily. Namely, we prove that [Formula: see text] holds.


Sign in / Sign up

Export Citation Format

Share Document