Fabrication of Novel n-SrTiO3/p-BiOI Heterojunction for Degradation of Crystal Violet Under Simulated Solar Light Irradiation

NANO ◽  
2018 ◽  
Vol 13 (06) ◽  
pp. 1850070 ◽  
Author(s):  
Yongmei Xia ◽  
Zuming He ◽  
Jiangbin Su ◽  
Ya Liu ◽  
Bin Tang ◽  
...  

Novel n-SrTiO3/p-BiOI heterojunction composites were successfully fabricated by loading SrTiO3 particles onto the surface of BiOI nanoflakes via a two-step method. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy-disperse X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS) and electrochemical measurements. The results show that the n-SrTiO3/p-BiOI heterojunction composites are composed of perovskite structure SrTiO3 and tetragonal phase BiOI. The composites exhibit excellent photocatalytic performance for the degradation of crystal violet (CV) solution under simulated solar light irradiation, which is superior to that of pristine BiOI and SrTiO3. The 30[Formula: see text]wt.%SrTiO3/BiOI composite is found to be the optimal composite, over which the dye degradation reaches 92.5% for 30[Formula: see text]min of photocatalysis. The photocatalytic activity of the 30[Formula: see text]wt.%SrTiO3/BiOI composite is found to be 3.94 times and 28.2 times higher than that of bare BiOI and SrTiO3, respectively. The reactive species trapping experiments suggest that [Formula: see text] and holes are the main active species responsible for the CV degradation. In addition, the electrochemical measurements elucidate the effective separation of photoinduced electron–hole pairs. Moreover, on the basis of experimental and theoretical results, a possible mechanism for the enhanced photocatalytic performance of the SrTiO3/BiOI heterojunction composites is also proposed.

2021 ◽  
pp. 0958305X2110002
Author(s):  
Nagalakshmi Meenatchisundaram ◽  
Jeganathan Chellamuthu ◽  
Anandha Raj Jeyaraman ◽  
Nithya Arjunan ◽  
Jothi Basu Muthuramalingam ◽  
...  

A simple one-step biosynthesis route has been adopted for the synthesis of high crystalline phase pure anatase TiO2 nanoparticles. The structural conformation and functional group analysis of the synthesized nanoparticles were made through X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), respectively. The optical property and the band gap were estimated by using UV-Visible diffuse reflectance spectroscopy (UV-DRS). The surface morphological properties of the anatase TiO2 nanoparticles were confirmed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and the size of the synthesized nanoparticles are 8 nm. The element analysis was evaluated by using EDS and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the prepared sample was investigated by the decolourization of Methylene blue dye under UV and solar light irradiation. The maximum dye removal efficiency of 99.2% was observed for solar light irradiation. Besides, the prepared samples also exhibit excellent antibacterial activity against Klebsilla Pneumoniae and Streptococcus Pneumoniae. The antibacterial activity for the synthesized TiO2 nanoparticles show maximum zone of inhibition (23.5 mm). Thus, the biogenic property of the bioprocessed TiO2 nanoparticles is a potential material for environmental and biomedical applications. [Formula: see text]


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1203 ◽  
Author(s):  
Isabel Barroso-Martín ◽  
Antonia Infantes-Molina ◽  
Aldo Talon ◽  
Loretta Storaro ◽  
Elena Rodríguez-Aguado ◽  
...  

In this work, SBA-15 silica and silica-titania have been used as supports for photocatalysts based on AuCu alloy (Au:Cu = 1) to be used in the preferential oxidation of CO (CO-PROX) in excess of hydrogen at room temperature and atmospheric pressure both in the dark and under simulated solar light irradiation. To study their textural, structural, chemical and optical properties, the samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), adsorption-desorption of N2 at −196 °C, 13C and 29Si solid state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy. Titanium was present mainly in the form of titania aggregates, but also as small particles interacting with the SBA support. In both catalysts, the metal alloy nanoparticles displayed an average size of 4 nm as demonstrated by TEM measurements. AuCu/Ti-SBA turned out to be photoactive and selective in the photo-CO-PROX reaction showing the highest activity, with conversion and selectivity towards CO2 of 80%, due both to the presence of titania incorporated in SBA-15 and to the synergistic effect of Cu when alloyed with Au.


2020 ◽  
Vol 18 (6) ◽  
pp. 390-409
Author(s):  
S. P. Ramírez ◽  
J. A. Wang ◽  
M. A. Valenzuela ◽  
L. F. Chen ◽  
A. Dalai

Hydrogen production from the photocatalytic reforming of glycerol aqueous solution was performed on the CuO@TiO2, NiO@TiO2, NiO@CuO, and CuO@NiO core-shell nanostructured catalysts under simulated solar light irradiation. These catalysts were prepared by the combination of a modified sol-gel and a precipitation-deposition method using hydroxypropyl cellulose as structural linker and they were characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV–Vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen physisorption isotherms techniques. The catalysts containing TiO2 as a shell and CuO as core showed much higher activity compared with those formulated with NiO@CuO, CuO@NiO, and bared CuO or NiO nanoparticles. The highest rate of hydrogen production obtained with the CuO@TiO2 catalyst was as high as 153.8 μmol·g−1h-1, which was 29.0, 24.8, 11.2 and 3.2 times greater than that obtained on CuO@NiO, NiO@CuO, TiO2 P25, and NiO@TiO2 catalyst, respectively. For the high active CuO@TiO2 catalyst, after activation of TiO2 with solar light irradiation, the conduction band electrons can be transferred to CuO core through the heterojunction in the core-shell interfaces which led to CuO gradually reduced to Cu2O, favoring the reduction of proton to release hydrogen.


RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 99658-99663 ◽  
Author(s):  
Tingting Zheng ◽  
Jiayue Xu ◽  
Zhijie Zhang ◽  
Haibo Zeng

A novel P3HT/Bi2WO6 composite photocatalyst with high charge separation and migration efficiency was designed, which exhibited excellent photocatalytic performance in the degradation of RhB under simulated solar light irradiation.


NANO ◽  
2016 ◽  
Vol 11 (08) ◽  
pp. 1650090 ◽  
Author(s):  
Wei Li ◽  
Gang Ni ◽  
Jing Li ◽  
Ying Han

BiOI/HZSM-5 composites were synthesized via a facile and environmentally-benign hydrothermal method. The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of samples was tested for degradation of methylene blue (MB) and Rhodamine B (RhB) dye under simulated solar light irradiation. The degradation rate of MB and RhB by BiOI/HZSM-5 composite photocatalysts respective reach 99.6% and 98.6% under visible light irradiation, BiOI/HZSM-5 exhibited the highest photocatalytic performance when compared with pure BiOI.


2019 ◽  
Vol 233 (3) ◽  
pp. 347-359 ◽  
Author(s):  
Zuming He ◽  
Yongmei Xia ◽  
Bin Tang ◽  
Jiangbin Su ◽  
Xingfang Jiang

Abstract A series of magnetically recyclable NiFe2O4/ZnO nanocomposites have been successfully fabricated by a facile two-step route. The as-prepared NiFe2O4/ZnO nanocomposites were characterized by X-ray diffraction, field-emission scanning electron microscopy, vibrating sample magnetometer, ultraviolet-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. The results demonstrate that the NiFe2O4/ZnO nanocomposites are composed of ZnO particles (50–120 nm) integrated with NiFe2O4 particles (30–80 nm). Compared with bare ZnO, the NiFe2O4/ZnO nanocomposites exhibit evidently enhanced visible light absorption and decreased recombination of photo-generated electron-hole pairs. Moreover, the nanocomposites exhibit enhanced photocatalytic performance for the degradation of methylene blue under simulated solar light irradiation when compared with bare ZnO, and the 20%-NiFe2O4/ZnO nanocomposite is observed as the optimal composite. This is ascribed to the more efficient separation of photo-generated electron-hole pairs and generation of hydroxyl (˙OH) radicals in the 20%-NiFe2O4/ZnO nanocomposite. Furthermore, the NiFe2O4/ZnO nanocomposites have a high saturation magnetization, indicating that they can be magnetically separated and recycled from organic dye wastewater.


Sign in / Sign up

Export Citation Format

Share Document