Synthesis of Flower-Like Hybrid BiOI/HZSM-5 Composites with High Visible-Light Photocatalytic Activity

NANO ◽  
2016 ◽  
Vol 11 (08) ◽  
pp. 1650090 ◽  
Author(s):  
Wei Li ◽  
Gang Ni ◽  
Jing Li ◽  
Ying Han

BiOI/HZSM-5 composites were synthesized via a facile and environmentally-benign hydrothermal method. The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of samples was tested for degradation of methylene blue (MB) and Rhodamine B (RhB) dye under simulated solar light irradiation. The degradation rate of MB and RhB by BiOI/HZSM-5 composite photocatalysts respective reach 99.6% and 98.6% under visible light irradiation, BiOI/HZSM-5 exhibited the highest photocatalytic performance when compared with pure BiOI.

2016 ◽  
Vol 35 (9) ◽  
pp. 853-856 ◽  
Author(s):  
Yi Shen ◽  
Xiaomin Wang ◽  
Guifu Zuo ◽  
Fengfeng Li ◽  
Yanzhi Meng

AbstractMonoclinic BiVO4 photocatalyst was successfully synthesized by hydrothermal method under appropriate temperature. The photocatalytic performance of BiVO4 was improved by calcining at appropriate temperature. The structural and morphological properties of the synthesized BiVO4 photocatalysts were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. It is confirmed that the photocatalytic activity of the prepared catalysts was evaluated by the photodegradation of RhB under visible-light irradiation. BiVO4 calcined under appropriate temperature exhibited higher photocatalytic activity than uncalcined BiVO4 under visible light irradiation because calcination might effectively increases the purity of monoclinic bismuth vanadate.


2018 ◽  
Vol 914 ◽  
pp. 168-174
Author(s):  
Jun Qing Chang ◽  
Yan Zhong ◽  
Chao Hao Hu ◽  
Zong Wei Ji ◽  
Yi Fan Li ◽  
...  

The smooth spherical BiOCl photocatalyst was synthesized successfully by a facile solvothermal method and further characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer and UV-Vis diffuse reflectance spectra techniques. The photocatalytic activity of as-prepared photoctalyst was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation (λ>420 nm). The results showed that the BiOCl with smooth spherical morphology exhibits an excellent photocatalytic activity and stability. RhB was thoroughly degraded after 60 min of visible light irradiation.


Author(s):  
Brijesh Pare ◽  
Satish Piplode ◽  
Vaishali Joshi

Flower like bismuth oxy chloride (BiOCl) was successfully synthesized by a simple hydrolytic method at room temperature. The precursor and as-prepared samples were characterized by X-ray diffraction (XRD), High Resolution Field Emission Scanning Electron Microscope (HR FESEM). The results indicated that the as-prepared BiOCl sample is self-assembled hierarchically with nano sheets. The photocatalytic activity of BiOCl was tested on the degradation of the Oxamyl (OM) under solar light irradiation. The results showed that pesticide molecules could be efficiently degraded over BiOCl under solar light irradiation. All the experiment were carried out in the following reaction condition, [OM] = 10-4 mol dm-3, BiOCl NPs= 40mg/50ml, pH= 6.3. Effect of operational parameter such as concentration of H2O2, K2S2O8, FeCl3, Fenton’s reagent (Fe3+/H2O2) and N2, O2 purging on the photocatalytic degradation was observed.


2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2018 ◽  
Vol 238 ◽  
pp. 03007
Author(s):  
Xiquan Wang ◽  
Nan Zhang ◽  
Gao Wang

Bi2S3-sensitized BiFO3 (BFO) photocatalyst (Bi2S3/BFO) was successfully synthesized through a facile and environmental ion exchange method between BFO and Thiosurea (H2NCSNH2, TU). The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflection spectroscopy (DRS). The obtained Bi2S3/BFO composites showed excellent photocatalytic performance for decomposing Rhodamine B (RhB) compared with pure BFO under visible light irradiation (λ>400nm). 5% Bi2S3/BFO exhibited the highest photocatalytic activity and excessive amount of Bi2S3 would result in the decrease of photocatalytic activity of BFO. The mechanism of enhanced photocatalytic activity was proposed on the basis of the calculated energy band positions.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1332
Author(s):  
Duc Quang Dao ◽  
Thi Kim Anh Nguyen ◽  
Thanh-Truc Pham ◽  
Eun Woo Shin

Co-doped NiTiO3/g-C3N4 composite photocatalysts were prepared by a modified Pechini method to improve their photocatalytic activity toward methylene blue photodegradation under visible light irradiation. The combination of Co-doped NiTiO3 and g-C3N4 and Co-doping into the NiTiO3 lattice synergistically enhanced the photocatalytic performance of the composite photocatalysts. X-ray photoelectron spectroscopy results for the Co-doped NiTiO3/g-C3N4 composite photocatalysts confirmed Ti-N linkages between the Co-doped NiTiO3 and g-C3N4. In addition, characteristic X-ray diffraction peaks for the NiTiO3 lattice structure clearly indicated substitution of Co into the NiTiO3 lattice structure. The composite structure and Co-doping of the C-x composite photocatalysts (x wt % Co-doped NiTiO3/g-C3N4) not only decreased the emission intensity of the photoluminescence spectra but also the semicircle radius of the Nyquist plot in electrochemical impedance spectroscopy, giving the highest kapp value (7.15 × 10−3 min−1) for the C-1 composite photocatalyst.


2009 ◽  
Vol 79-82 ◽  
pp. 2115-2118
Author(s):  
Xian Hua Zhang ◽  
Lei Ge

The novel visible-light-driven Ag/BiVO4 composite photocatalysts were successfully prepared by photo-deposition method. The as-prepared Ag/BiVO4 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the Ag/BiVO4 powders were determined by degradation of methyl orange molecules in water under visible light irradiation (λ>400nm). The photocatalytic experiments indicated that the composite samples enhanced photo-activity under visible light irradiation.


2014 ◽  
Vol 807 ◽  
pp. 101-113 ◽  
Author(s):  
J. Theerthagiri ◽  
R.A. Senthil ◽  
J. Madhavan ◽  
B. Neppolian

The graphitic carbon nitride (g-C3N4) materials have been synthesized from nitrogen rich precursors such as urea and thiourea by directly heating at 520 °C for 2 h. The as-synthesized carbon nitride samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) and particle size analysis. The photoelectrochemical measurements were performed using several on-off cycles under visible-light irradiation. The x-ray diffraction peak is broader which indicates the fine powder nature of the synthesized materials. The estimated crystallite size of carbon nitrides synthesized from urea (U-CN) and thiourea (T-CN) are 4.0 and 4.4 nm respectively. The particle size of U-CN and T-CN were analysed by particle size analyser and were found to be 57.3 and 273.3 nm respectively. The photocatalytic activity for the degradation of the textile dye namely, direct red-81 (DR81) using these carbon nitrides were carried out under visible light irradiation. In the present investigation, a comparison study on the carbon nitrides synthesized from cheap precursors such as urea and thiourea for the degradation of DR81 has been carried out. The results inferred that U-CN exhibited higher photocatalytic activity than T-CN. The photoelectrochemical studies confirmed that the (e--h+) charge carrier separation is more efficient in U-CN than that of T-CN and therefore showed high photocatalytic degradation. Further, the smaller particle size of U-CN is also responsible for the observed degradation trend.


2022 ◽  
Author(s):  
G. Roshini ◽  
V. Sathish ◽  
S. Manigandan ◽  
A. Tamilarasi ◽  
E. Priyanka

Abstract In this paper, the highly stable Ag/CdS-WO2 nanocomposite was fabricated by a facile and capping agent-free hydrothermal technique. The fabricated Ag doped CdS-WO2 nanocomposite were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and UV-vis diffuse reflectance (DRS) spectroscopy. The photocatalytic performance of synthesized photocatalysts was evaluated for the photodegradation of rhodamine B (Rh B) under visible light irradiation (VLI). The parameters used for the optimization of the photocatalyst were pH, catalyst dose, oxidant dose, and irradiation time. Based on this, a possible reaction mechanism for the enhancement of photocatalytic activity of Ag/CdS-WO2 has been proposed. Hence, we have a tendency to believe it might be a promising material that may be used for the photodegradation of organic pollutants present in wastewater.


Sign in / Sign up

Export Citation Format

Share Document