Investigation of Electrochemical Performance on SnSe2 and SnSe Nanocrystals as Anodes for Lithium Ions Batteries

NANO ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1950155
Author(s):  
Yayi Cheng ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Yongfeng Wang ◽  
Ying Ma ◽  
...  

SnSe2 and SnSe nanocrystals were prepared using a simple solvothermal method by changing the molar ratio of SnCl[Formula: see text]2H2O and Se powder. When SnSe2 and SnSe are acted as lithium ion battery anodes, the SnSe hybrid structure shows more excellent electrochemical performance than that of SnSe2 interconnected nanosheet. It delivers a reversible capacity of 1023[Formula: see text]mAh[Formula: see text]g[Formula: see text] at a current density of 200[Formula: see text]mA[Formula: see text]g[Formula: see text], and maintaining a capacity of 498[Formula: see text]mAh[Formula: see text]g[Formula: see text] till 120 cycles. According to many present works, SnSe2 with interconnected thin nanosheet should possess more superior property than hybrid structured SnSe due to short charge transfer paths. However, in our research, the result is the opposite. Therefore, we consider that the superior electrochemical performance of SnSe is attributed to its highly reversible conversion reaction mechanism than SnSe2.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Lihua Chu ◽  
Meicheng Li ◽  
Yu Wang ◽  
Xiaodan Li ◽  
Zipei Wan ◽  
...  

Graphene-based nanocomposites attract many attentions because of holding promise for many applications. In this work, multishelled NiO hollow spheres decorated by graphene nanosheets nanocomposite are successfully fabricated. The multishelled NiO microspheres are uniformly distributed on the surface of graphene, which is helpful for preventing aggregation of as-reduced graphene sheets. Furthermore, the NiO/graphene nanocomposite shows much higher electrochemical performance with a reversible capacity of 261.5 mAh g−1at a current density of 200 mA g−1after 100 cycles tripled compared with that of pristine multishelled NiO hollow spheres, implying the potential application in modern science and technology.


2015 ◽  
Vol 3 (34) ◽  
pp. 17713-17720 ◽  
Author(s):  
Li Liu ◽  
Taeseup Song ◽  
Hyungkyu Han ◽  
Hyunjung Park ◽  
Juan Xiang ◽  
...  

Porous LiMnPO4/C composite nanofibers show excellent electrochemical performance including a high reversible capacity of 112.7 mA h g−1 and stable cycle retention of 95% after 100 cycles.


NANO ◽  
2020 ◽  
Vol 15 (09) ◽  
pp. 2050117
Author(s):  
Meng Sun ◽  
Sijie Li ◽  
Jiajia Zou ◽  
Zhipeng Cui ◽  
Qingye Zhang ◽  
...  

ZnMn2O4 nanoparticles (NPs) wrapped by reduced graphene oxide (rGO) were fabricated via a two-step solvothermal method and used as an anode material for lithium-ion batteries (LIBs). Compared to pure ZnMn2O4, the ZnMn2O4 NPs/rGO composites deliver higher capacities of 1230 mAh g−1 and 578 mAh g−1 after 200 cycles at a current density of 100 mA g−1 and 500 mA g−1, respectively. The enhanced electrochemical performance of ZnMn2O4 NPs/rGO composites is mainly attributed to a distinctive structure (ZnMn2O4 NPs surrounded by flexible rGO), which can promote the diffusion of Li+, accelerate the transport of electrons and buffer volume expansion during the Li+ insertion/extraction process. Furthermore, the rGO sheets can effectively prevent the agglomeration of ZnMn2O4 NPs, thus, improving structural stability of the composites. The excellent electrochemical performance indicates that such ZnMn2O4 NPs/rGO composite structure has a great potential for high-performance LIBs.


2019 ◽  
Vol 9 (21) ◽  
pp. 4647
Author(s):  
Hee-Youb Song ◽  
Moon-Hyung Jung ◽  
Soon-Ki Jeong

In concentrated propylene carbonate (PC)-based electrolyte solutions, reversible lithium intercalation and de-intercalation occur at graphite negative electrodes because of the low solvation number. However, concentrated electrolyte solutions have low ionic conductivity due to their high viscosity, which leads to poor electrochemical performance in lithium-ion batteries. Therefore, we investigated the effect of the addition of 1,2-dichloroethane (DCE), a co-solvent with low electron-donating ability, on the electrochemical properties of graphite in a concentrated PC-based electrolyte solution. An effective solid electrolyte interphase (SEI) was formed, and lithium intercalation into graphite occurred in the concentrated PC-based electrolyte solutions containing various amounts of DCE, while the reversible capacity improved. Raman spectroscopy results confirmed that the solvation structure of the lithium ions, which allows for effective SEI formation, was maintained despite the decrease in the total molality of LiPF6 by the addition of DCE. These results suggest that the addition of a co-solvent with low electron-donating ability is an effective strategy for improving the electrochemical performance in concentrated electrolyte solutions.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2117 ◽  
Author(s):  
Haipeng Li ◽  
Jiayi Wang ◽  
Yan Zhao ◽  
Taizhe Tan

The ZnO@ZnS nanorod is synthesized by solvothermal method as an anode material for lithium ion batteries. ZnS is deposited on ZnO and assembles in nanorod geometry successfully. The nanosized rod structure supports ion diffusion by substantially reducing the ion channel. The close-linking of ZnS and ZnO improves the synergetic effect. ZnS is in the middle of the ZnO core and the external environment, which would greatly relieve the volume change of the ZnO core during the Li+ intercalation/de-intercalation processes; therefore, the ZnO@ZnS nanorod is helpful in maintaining excellent cycle stability. The ZnO@ZnS nanorod shows a high discharge capacity of 513.4 mAh g−1 at a current density of 200 mA g−1 after 100 cycles, while a reversible capacity of 385.6 mAh g−1 is achieved at 1000 mA g−1.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50846-50850 ◽  
Author(s):  
Renbing Wu ◽  
Xukun Qian ◽  
Adrian Wing-Keung Law ◽  
Kun Zhou

A green and convenient coordination polymers-inspired approach was developed to synthesize porous Co3O4 hollow nanospheres. The electrodes made of such nanospheres exhibited excellent electrochemical performance in lithium-ion batteries.


2016 ◽  
Vol 45 (34) ◽  
pp. 13509-13513 ◽  
Author(s):  
Danhua Ge ◽  
Junjie Wu ◽  
Genlong Qu ◽  
Yaoyao Deng ◽  
Hongbo Geng ◽  
...  

Porous Co3O4nanocrystals derived from Co(ii) oleate complexes exhibit excellent electrochemical performance including a high reversible capacity as anode materials for lithium-ion batteries.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2436
Author(s):  
Da-Won Lee ◽  
Achmad Yanuar Maulana ◽  
Chaeeun Lee ◽  
Jungwook Song ◽  
Cybelle M. Futalan ◽  
...  

Doping heteroatoms such as nitrogen (N) and boron (B) into the framework of carbon materials is one of the most efficient methods to improve the electrical performance of carbon-based electrodes. In this study, N-doped carbon has been facilely synthesized using a ZIF-8/polydopamine precursor. The polyhedral structure of ZIF-8 and the effective surface-coating capability of dopamine enabled the formation of N-doped carbon with a hollow structure. The ZIF-8 polyhedron served as a sacrificial template for hollow structures, and dopamine participated as a donor of the nitrogen element. When compared to ZIF-8-derived carbon, the HSNC electrode showed an improved reversible capacity of approximately 1398 mAh·g−1 after 100 cycles, with excellent cycling retention at a voltage range of 0.01 to 3.0 V using a current density of 0.1 A·g−1.


2016 ◽  
Vol 4 (40) ◽  
pp. 15302-15308 ◽  
Author(s):  
Zhigao Luo ◽  
Jiang Zhou ◽  
Lirong Wang ◽  
Guozhao Fang ◽  
Anqiang Pan ◽  
...  

We report the synthesis of a novel 2D hybrid nanosheet constructed by few layered MoSe2 grown on reduced graphene oxide (rGO), which exhibits excellent electrochemical performance as anodes for lithium ion batteries.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Yongli Cui ◽  
Jiali Wang ◽  
Mingzhen Wang ◽  
Quanchao Zhuang

Shell spinel LiNi[Formula: see text]Mn[Formula: see text]O4 hollow microspheres were successfully synthesized by MnCO3 template, and characterized by XRD, SEM, and TEM. The results show that the hollow LiNi[Formula: see text]Mn[Formula: see text]O4 cathode has good cycle stability to reach 124.5, 119.8, and 96.6[Formula: see text]mAh/g at 0.5, 1, and 5 C, the corresponding retention rate of 98.1%, 98.2%, and 98.0% after 50 cycles at 20[Formula: see text]C, and the reversible capacity of 94.6[Formula: see text]mAh/g can be obtained at 1 C rate at 55[Formula: see text]C, 83.3% retention after 100 cycles. As the temperature decreases from 10[Formula: see text]C to [Formula: see text]C, the resistance of [Formula: see text] increases from 5.5 [Formula: see text] to 135 [Formula: see text], [Formula: see text] from 27 [Formula: see text] to 353.2 [Formula: see text], and [Formula: see text] from 12.7 [Formula: see text] to 73.0 [Formula: see text]. Moreover, the B constant and [Formula: see text] activation energy are 4480[Formula: see text]K and 37.22[Formula: see text]KJ/mol for the NTC spinel material, respectively.


Sign in / Sign up

Export Citation Format

Share Document