A Tool for Spatial Reasoning in XML Documents

2015 ◽  
Vol 09 (01) ◽  
pp. 67-103
Author(s):  
Nikos Papadakis ◽  
Sokratis Kartakis ◽  
Kostas Papadakis ◽  
Eva Papadaki

In this paper, we study the ramification problem in the setting of spatial xml data. Standard solutions from the literature on reasoning about action are inadequate because they cannot capture integrity constraints in spatial data. In this paper, we provide a solution to the ramification problem based on situation calculus. We present a tool that connects the theoretical results with the practical considerations, by producing the User Interface in C# in order to address the ramification problem in spatial XML file in specific time period. a

Author(s):  
Jens Claßen ◽  
James Delgrande

With the advent of artificial agents in everyday life, it is important that these agents are guided by social norms and moral guidelines. Notions of obligation, permission, and the like have traditionally been studied in the field of Deontic Logic, where deontic assertions generally refer to what an agent should or should not do; that is they refer to actions. In Artificial Intelligence, the Situation Calculus is (arguably) the best known and most studied formalism for reasoning about action and change. In this paper, we integrate these two areas by incorporating deontic notions into Situation Calculus theories. We do this by considering deontic assertions as constraints, expressed as a set of conditionals, which apply to complex actions expressed as GOLOG programs. These constraints induce a ranking of "ideality" over possible future situations. This ranking in turn is used to guide an agent in its planning deliberation, towards a course of action that adheres best to the deontic constraints. We present a formalization that includes a wide class of (dyadic) deontic assertions, lets us distinguish prima facie from all-things-considered obligations, and particularly addresses contrary-to-duty scenarios. We furthermore present results on compiling the deontic constraints directly into the Situation Calculus action theory, so as to obtain an agent that respects the given norms, but works solely based on the standard reasoning and planning techniques.


Author(s):  
Emmanuel Skoufias ◽  
Eric Strobl ◽  
Thomas Tveit

AbstractThis article demonstrates the construction of earthquake and volcano damage indices using publicly available remote sensing sources and data on the physical characteristics of events. For earthquakes we use peak ground motion maps in conjunction with building type fragility curves to construct a local damage indicator. For volcanoes we employ volcanic ash data as a proxy for local damages. Both indices are then spatially aggregated by taking local economic exposure into account by assessing nightlight intensity derived from satellite images. We demonstrate the use of these indices with a case study of Indonesia, a country frequently exposed to earthquakes and volcanic eruptions. The results show that the indices capture the areas with the highest damage, and we provide overviews of the modeled aggregated damage for all provinces and districts in Indonesia for the time period 2004 to 2014. The indices were constructed using a combination of software programs—ArcGIS/Python, Matlab, and Stata. We also outline what potential freeware alternatives exist. Finally, for each index we highlight the assumptions and limitations that a potential practitioner needs to be aware of.


2014 ◽  
Vol 953-954 ◽  
pp. 1481-1487
Author(s):  
Liu Jin

Windows energy saving design of residential buildings has increasingly got the attention of people. Through a large number of surveys and analysis of residential buildings in Chongqing and consumers personal experience, the author finds problems and deficiency, and then proposes principles of residential buildings sun shading reconstruction in Chongqing city. Taking the high-rise residential building of one university in Chongqing as reconstruction sample, selecting a specific time period, the author recalculates sun shading coefficient with and without sun shading by using Ecotect software to do simulation analysis. Finally, the reasonable reconstruction design pattern is put forward through cases. Keywords: Buildings Sun Shading, Sun Shading Reconstruction, Energy Saving


Author(s):  
Ganga Gudi ◽  
Dr. Hanumanthappa M

Wireless communication has become important in location-based services. The enormous amount of data is extracted for useful information to solve the real world problem. Global positioning system, is used to captures the position of an object at specific time period. The scheme is finding the congested route by considering the number of vehicles in a road segment. It consists of two methods, firstly it finds the group of points based on consistency of route points and second it arranges the groups in sequence of values for each route


2021 ◽  
Author(s):  
Christine Alison Johns

Focusing on a specific time period in Canadian performing art history--from the 1970s through to the late 1990s--this thesis "maps out" three artists' experiences in the landscape and the way these experiences are represented to an audience through performance. Using specific examples from the repertoire of Davida Monk, Paul Thompson, and R. Murray Schafer, I make a case for considering these performing artists as landscape researchers. I suggest that their performances explicitly and implicitly explore foundational questions about the meanings, uses, and affective power of landscape in ways that are analogous to the writings of cultural geographers during the same period. Like Yi-Fu Tuan, John Jakle, Denis Cosgrove and Jay Appleton, these performing artists examine the experience of humans in the landscape and focus on issues of place and space, homeland, and the meaning of landscape. Monk, Thompson and Schafer extend the perspectives of the geographers and bridge important gaps in their ways of knowing landscape.


2012 ◽  
Vol 3 (1) ◽  
pp. 21-30
Author(s):  
Jean Damascène Mazimpaka

Spatial databases form the foundation for a Spatial Data Infrastructure (SDI). For this, a spatial database should be methodically developed to accommodate its role in SDI. It is desirable to have an approach to spatial database development that considers maintenance from the early stage of database design and in a flexible way. Moreover, there is a lack of a mechanism to capture topological relations of spatial objects during the design process. This paper presents an approach that integrates maintenance of topological integrity constraints into the whole spatial database development cycle. The approach is based on the concept of Abstract Data Types. A number of topological classes have been identified and modelling primitives developed for them. Topological integrity constraints are embedded into maintenance functions associated with the topological classes. A semi-automatic transformation process has been developed following the principles of Model Driven Architecture to simplify the design process.


Author(s):  
Alessandro Campi

This Chapter describes a visual framework; called XQBE; that covers the most important aspects of XML data management; spanning the visualization of XML documents; the formulation of queries; the representation and specification of document schemata; the definition of integrity constraints; the formulation of updates; and the expression of reactive behaviors in response to data modifications. All these features are strongly unified by a common visual abstraction and a few recurrent paradigms; so as to provide a homogeneous and comprehensive environment that allows even users without advanced programming skills to deal with nontrivial XML data management and transformation tasks. The intrinsic ambiguity inherent in any visual representation of richly expressive languages required a considerable effort of formalization in the semantics of XQBE that eventually lead to a solution with major advantages in terms of intuitiveness. In other words; this means that the unique (and unambiguous) effect of a statement is the one the user would expect.


Author(s):  
Kazuko Takahashi

This chapter describes a framework called PLCA for Qualitative Spatial Reasoning (QSR) based on the connection patterns of regions. The goal of this chapter is to provide a simple but expressive and feasible representation for qualitative data with sufficient reasoning ability. PLCA provides a symbolic representation for spatial data using simple objects. The authors of this chapter define its expression and operations on it, and show the correspondance between the expression and a figure. PLCA also provides semantical reasoning incorporated with spatial reasoning. Moreover, it can be extended to handle shapes of regions. Throughout the study, the authors discovered many topics that relate QSR to other research areas such as topology, graph theory, and computational geometry, while achieving the research goals. This indicates that QSR is a very fruitful research area.


Author(s):  
Leopoldo Bertossi ◽  
Javier Pinto ◽  
Pablo Saez ◽  
Deepak Kapur ◽  
Mahadevan Subramaniam

Sign in / Sign up

Export Citation Format

Share Document