ENTIRE SOLUTIONS FOR LOTKA–VOLTERRA COMPETITION-DIFFUSION MODEL

2013 ◽  
Vol 06 (04) ◽  
pp. 1350020 ◽  
Author(s):  
XIAOHUAN WANG ◽  
GUANGYING LV

This paper is concerned with the existence of entire solutions of Lotka–Volterra competition-diffusion model. Using the comparing argument and sub-super solutions method, we obtain the existence of entire solutions which behave as two wave fronts coming from the both sides of x-axis, where an entire solution is meant by a classical solution defined for all space and time variables.

2015 ◽  
Vol 08 (04) ◽  
pp. 1550052 ◽  
Author(s):  
Guangying Lv ◽  
Dang Luo

This paper is concerned with the existence of entire solutions of some reaction–diffusion systems. We first consider Belousov–Zhabotinskii reaction model. Then we study a general model. Using the comparing argument and sub-super-solutions method, we obtain the existence of entire solutions which behave as two wavefronts coming from the both sides of x-axis, where an entire solution is meant by a classical solution defined for all space and time variables. At last, we give some examples to explain our results for the general models.


2018 ◽  
Vol 99 (1) ◽  
pp. 137-147
Author(s):  
LIXIA YUAN ◽  
BENDONG LOU

We consider a curvature flow $V=\unicode[STIX]{x1D705}+A$ in a two-dimensional undulating cylinder $\unicode[STIX]{x1D6FA}$ described by $\unicode[STIX]{x1D6FA}:=\{(x,y)\in \mathbb{R}^{2}\mid -g_{1}(y)<x<g_{2}(y),y\in \mathbb{R}\}$, where $V$ is the normal velocity of a moving curve contacting the boundaries of $\unicode[STIX]{x1D6FA}$ perpendicularly, $\unicode[STIX]{x1D705}$ is its curvature, $A>0$ is a constant and $g_{1}(y),g_{2}(y)$ are positive smooth functions. If $g_{1}$ and $g_{2}$ are periodic functions and there are no stationary curves, Matano et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit’, Netw. Heterog. Media1 (2006), 537–568] proved the existence of a periodic travelling wave. We consider the case where $g_{1},g_{2}$ are general nonperiodic positive functions and the problem has some stationary curves. For each stationary curve $\unicode[STIX]{x1D6E4}$ unstable from above/below, we construct an entire solution growing out of it, that is, a solution curve $\unicode[STIX]{x1D6E4}_{t}$ which increases/decreases monotonically, converging to $\unicode[STIX]{x1D6E4}$ as $t\rightarrow -\infty$ and converging to another stationary curve or to $+\infty /-\infty$ as $t\rightarrow \infty$.


2019 ◽  
Vol 31 (3) ◽  
pp. 407-422 ◽  
Author(s):  
BENDONG LOU ◽  
JUNFAN LU ◽  
YOSHIHISA MORITA

In this paper, we study the entire solutions of the Fisher–KPP (Kolmogorov–Petrovsky–Piskunov) equation ut = uxx + f(u) on the half line [0, ∞) with Dirichlet boundary condition at x = 0. (1) For any $c \ge 2\sqrt {f'(0)} $, we show the existence of an entire solution ${{\cal U}^c}(x,t)$ which connects the traveling wave solution φc(x + ct) at t = −∞ and the unique positive stationary solution V(x) at t = +∞; (2) We also construct an entire solution ${{\cal U}}(x,t)$ which connects the solution of ηt = f(η) at t = −∞ and V(x) at t = +∞.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1991 ◽  
Vol 06 (26) ◽  
pp. 2397-2409 ◽  
Author(s):  
P. MATHIEU ◽  
W. OEVEL

The classical [Formula: see text] algebra Polyakov is shown to be equivalent to the second Poisson structure of a new integrable hierarchy of nonlinear equations. The hierarchy is related to the Boussinesq hierarchy by interhcanging the roles of the space and time variables x and t in the Boussinesq equation. From this relation the Miura map, relating the new hierarchy to its modified version, can be derived systematically. It is found to be equivalent to the known free field representation of the [Formula: see text] algebra.


Author(s):  
C. Atkinson ◽  
G. E. H. Reuter

In the well-known deterministic model for the spread of an epidemic, one considers a population of uniform density along a line and divides the population into three classes: susceptible but uninfected, infected and infectious, infected but removed. If we denote space and time variables by s, t and let x(s, t), y(s, t), z(s, t) be the proportions of the population at (s, t) in these three classes, then x + y + z = 1 and we suppose thatHere Ῡ(s, t) denotes a space average ∫ y(s + σ) p(σ) dσ, where p is a probability density function; b is the removal rate; the scale of t has been adjusted to remove a constant that would otherwise occur in (1).


Sign in / Sign up

Export Citation Format

Share Document