A pest control model with state-dependent impulses

2015 ◽  
Vol 08 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Xuehui Ji ◽  
Sanling Yuan ◽  
Lansun Chen

In this paper, a pest control model with state-dependent impulses is firstly established, which relies on releasing of natural enemies, together with spraying pesticides. By using the successor function of differential equation geometry rules, the existence of order one periodic solution is discussed. According to the Analogue of Poincaré's Criterion, the orbitally asymptotic stability of the order one periodic solution is obtained. Furthermore, we investigated the global attractor of the system. From a biological point of view, our results indicate that: (1) the pest population can be controlled below some threshold; (2) compared to single measure, it is more efficient to take two measures for reducing the level of the pests.

2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Huidong Cheng ◽  
Fang Wang ◽  
Tongqian Zhang

According to the integrated pest management strategies, we propose a model for pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution of such system, and further, the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results. Our results show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Bing Liu ◽  
Ying Duan ◽  
Yinghui Gao

Many existing pest control models, which control pests by releasing natural enemies, neglect the effect that natural enemies may get killed. From this point of view, we formulate a pest control model with stage structure for the pest with constant maturation time delay (through-stage time delay) and periodic releasing natural enemies and natural enemies killed at different fixed time and perform a systematic mathematical and ecological study. By using the comparison theorem and analysis method, we obtain the conditions for the global attractivity of the pest-eradication periodic solution and permanence of the system. We also present a pest management strategy in which the pest population is kept under the economic threshold level (ETL) when the pest population is uniformly permanent. We show that maturation time delay, impulsive releasing, and killing natural enemies can bring great effects on the dynamics of the system. Numerical simulations confirm our theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Huidong Cheng ◽  
Fang Wang ◽  
Tongqian Zhang

According to the different effects of biological and chemical control, we propose a model for Holling I functional response predator-prey system concerning pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove that the existence of order one periodic solution of such system and the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Samit Bhattacharyya ◽  
Suma Ghosh

We study the role of predation dynamics in oscillation of pest population in insect ecology. A two-dimensional pest control model (under the use of insecticides) with time delay in predation is considered in this paper. By the Hopf bifurcation theory, we prove the existence of the stable oscillation of the system. We also consider the economic viability of the control process. First we improve the Pontryagin maximum principle (PMP) where the delay in the system is sufficiently small and control function is linear, and then we apply the improved version of PMP to perform the optimal analysis of the pest control model as a special case.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Huidong Cheng ◽  
Tongqian Zhang ◽  
Fang Wang

According to the integrated pest management strategies, a Holling type I functional response predator-prey system concerning state-dependent impulsive control is investigated. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution, and the attractivity of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient than the existing ones for proving the existence and attractiveness of order one periodic solution.


2018 ◽  
Vol 85 (3-4) ◽  
pp. 265
Author(s):  
Bhanu Gupta ◽  
Amit Sharma ◽  
Sanjay K. Srivastava

It is a need of time to use hybrid approach (biological and chemical) to control agriculture pests effectively, economically and safely. Most of the pests and natural enemies in their life history goes through two stages namely immature larva and mature adult. From this biological point of view, we purpose a pest control model with stage structuring in pests and natural enemies in the presence of impulsively released natural enemy and chemical pesticides. Using Floquet theory and small ampli- tude perturbation technique, the local stability of periodic solutions are discussed. The suffcient conditions for the global attractively of pest- extinction periodic solution and permanence of the system are obtained by using comparison technique of differential equations with impulsive effect. At last an extensive simulation is done to verify the theoretical ndings and to see the rich dynamical behavior of the system.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chuanjun Dai

In this paper, an ecological model described by a couple of state-dependent impulsive equations is studied analytically and numerically. The theoretical analysis suggests that there exists a semitrivial periodic solution under some conditions and it is globally orbitally asymptotically stable. Furthermore, using the successor function, we study the existence, uniqueness, and stability of order-1 periodic solution, and the boundedness of solution is also presented. The relationship between order-k successor function and order-k periodic solution is discussed as well, thereby giving the existence condition of an order-3 periodic solution. In addition, a series of numerical simulations are carried out, which not only support the theoretical results but also show the complex dynamics in the model further, for example, the coexistence of multiple periodic solutions, chaos, and period-doubling bifurcation.


Author(s):  
Ayman A. Arafa ◽  
Soliman A.A. Hamdallah ◽  
Sanyi Tang ◽  
Yong Xu ◽  
Gamal M. Mahmoud

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


Sign in / Sign up

Export Citation Format

Share Document