Biological control of a predator–prey system through provision of an infected predator

2018 ◽  
Vol 11 (08) ◽  
pp. 1850105 ◽  
Author(s):  
Hui Zhang ◽  
Genjiu Xu ◽  
Hao Sun

Epidemic transmission has a substantial effect on the dynamics and stability of the predator–prey system, in which the transmission rate plays an important role. The probabilistic cellular automaton (PCA) approach is used to investigate the spatiotemporal dynamics of a predator–prey system with the infected predator. Remarkably, it is impossible to achieve a coexistence state of prey, susceptible predators, and infected predators in a spatial population. This is different from the analysis from a non-spatial population with the mean-field approximation, where Hopf bifurcation arises and the interior equilibrium becomes unstable, and a periodic solution appears with the increasing infection rate. The results show that the introduction of the infected predator with a high transmission rate is beneficial for the persistence of the prey population in space. However, a low transmission rate will promote the coexistence state of the prey and the susceptible predator populations. In summary, it is possible to develop management strategies to manipulate the transmission rate of the infected predator for the benefit of biological control.

2021 ◽  
Vol 53 (2) ◽  
pp. 261-285
Author(s):  
Reuben Iortyer Gweryina ◽  
Emilian Chinwendu Madubueze ◽  
Simon James Ogaji

In this study, we applied the principle of a competitive predator-prey system to propose a prey-predator-like model of xenophobia in Africa. The boundedness of the solution, the existence and stability of equilibrium states of the xenophobic model are discussed accordingly. As a special case, the coexistence state was found to be locally and globally stable based on the parametric conditions of effective group defense and anti-xenophobic policy implementation. The system was further analyzed by Sotomayor’s theory to show that each equilibrium point bifurcates transcritically. However, numerical proof showed period-doubling bifurcation, which makes the xenophobic situation more chaotic in Africa. Further numerical simulations support the analytical results with the view that tolerance, group defense and anti-xenophobic policies are critical parameters for the coexistence of foreigners and xenophobes.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Huidong Cheng ◽  
Tongqian Zhang ◽  
Fang Wang

According to the integrated pest management strategies, a Holling type I functional response predator-prey system concerning state-dependent impulsive control is investigated. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution, and the attractivity of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results which show that our method used in this paper is more efficient than the existing ones for proving the existence and attractiveness of order one periodic solution.


2007 ◽  
Vol 15 (04) ◽  
pp. 515-524 ◽  
Author(s):  
T. CABELLO ◽  
M. GÁMEZ ◽  
Z. VARGA

In this study, we analyze the functional response for a parasitoid-host and a predator-prey system, as a tool of biological control of pests to evaluate the potential of bio-control agents. A possible biological interpretation was given to the adjustment coefficients of type I and II functional response by Hassell.1 Based on this, we propose new expressions for type III in terms of a new parameter that we call entomophagous potential (parasitoid or predator), providing examples using actual data from trials carried out previously for parasitoid species Chelonus blackburni Cameron (Hym.: Braconidae) and predator species Joppeicus paradoxus Puton (Het.: Joppeicidae). The novelty of the paper consists in the fact that these new expressions for Holling type III functional response have a biological interpretation, and result in a better fit to data than Hassel's model.


2011 ◽  
Vol 09 (02) ◽  
pp. 677-687
Author(s):  
H. D. LIU ◽  
W. WANG ◽  
X. X. YI

Taking nonlinear effect into account, we study theoretically the transmission properties of photons in a one-dimensional coupled cavity, the cavity located at the center of the cavity array being coupled to a two-level system. By using the traditional scattering theory and the mean-field approximation, we calculate the transmission rate of photons along the cavities, and discuss the effect of nonlinearity and the cavity-atom coupling on the photon transport. The results show that the cavity-atom couplings affect the coherent transport of photons. The dynamics of such a system is also studied by numerical simulations, the effect of the atom-field detuning and nonlinearity on the dynamics is shown and discussed.


2019 ◽  
Author(s):  
Anudeep Surendran ◽  
Michael Plank ◽  
Matthew Simpson

AbstractSmall-scale spatial variability can affect community dynamics in many ecological and biological processes, such as predator-prey dynamics and immune responses. Spatial variability includes short-range neighbour-dependent interactions and small-scale spatial structure, such as clustering where individuals aggregate together, and segregation where individuals are spaced apart from one another. Yet, a large class of mathematical models aimed at representing these processes ignores these factors by making a classical mean-field approximation, where interactions between individuals are assumed to occur in proportion to their average density. Such mean-field approximations amount to ignoring spatial structure. In this work, we consider an individual based model of a two-species community that is composed of consumers and resources. The model describes migration, predation, competition and dispersal of offspring, and explicitly gives rise to varying degrees of spatial structure. We compare simulation results from the individual based model with the solution of a classical mean-field approximation, and this comparison provides insight into how spatial structure can drive the system away from mean-field dynamics. Our analysis reveals that mechanisms leading to intraspecific clustering and interspecific segregation, such as short-range predation and short-range dispersal, tend to increase the size of the resource species relative to the mean-field prediction. We show that under certain parameter regimes these mechanisms lead to the extinction of consumers whereas the classical mean-field model predicts the coexistence of both species.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Dayong Qi ◽  
Yuanyuan Ke

<p style='text-indent:20px;'>This work considers a pursuit-evasion model</p><p style='text-indent:20px;'><disp-formula><label/><tex-math id="FE1000">\begin{document}$\begin{equation} \left\{ \begin{split} &amp;u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &amp;v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &amp;w_t = \Delta w-w+v,\\ &amp;z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1) \end{equation}$\end{document}</tex-math></disp-formula></p><p style='text-indent:20px;'>with positive parameters <inline-formula><tex-math id="M1">\begin{document}$ \chi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id="M7">\begin{document}$ \Omega\subset\mathbb{R}^N $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M8">\begin{document}$ N $\end{document}</tex-math></inline-formula> is the dimension of the space) with smooth boundary. We prove that if <inline-formula><tex-math id="M9">\begin{document}$ a&lt;2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ \frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}&gt;\max\{\chi,\xi\} $\end{document}</tex-math></inline-formula>, (1) possesses a global bounded classical solution with a positive constant <inline-formula><tex-math id="M11">\begin{document}$ C_{\frac{N}{2}+1} $\end{document}</tex-math></inline-formula> corresponding to the maximal Sobolev regularity. Moreover, it is shown that if <inline-formula><tex-math id="M12">\begin{document}$ b\mu&lt;\lambda $\end{document}</tex-math></inline-formula>, the solution (<inline-formula><tex-math id="M13">\begin{document}$ u,v,w,z $\end{document}</tex-math></inline-formula>) converges to a spatially homogeneous coexistence state with respect to the norm in <inline-formula><tex-math id="M14">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> in the large time limit under some exact smallness conditions on <inline-formula><tex-math id="M15">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>. If <inline-formula><tex-math id="M17">\begin{document}$ b\mu&gt;\lambda $\end{document}</tex-math></inline-formula>, the solution converges to (<inline-formula><tex-math id="M18">\begin{document}$ \mu,0,0,\mu $\end{document}</tex-math></inline-formula>) with respect to the norm in <inline-formula><tex-math id="M19">\begin{document}$ L^\infty(\Omega) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M20">\begin{document}$ t\rightarrow \infty $\end{document}</tex-math></inline-formula> under some smallness assumption on <inline-formula><tex-math id="M21">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> with arbitrary <inline-formula><tex-math id="M22">\begin{document}$ \xi $\end{document}</tex-math></inline-formula>.</p>


2013 ◽  
Vol 58 (4) ◽  
pp. 1401-1403 ◽  
Author(s):  
J.A. Bartkowska ◽  
R. Zachariasz ◽  
D. Bochenek ◽  
J. Ilczuk

Abstract In the present work, the magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the multiferroic composite was determined. The research material was ferroelectric-ferromagnetic composite on the based PZT and ferrite. We investigated the temperature dependences of the dielectric permittivity (") for the different frequency of measurement’s field. From the dielectric measurements we determined the temperature of phase transition from ferroelectric to paraelectric phase. For the theoretical description of the temperature dependence of the dielectric constant, the Hamiltonian of Alcantara, Gehring and Janssen was used. To investigate the dielectric properties of the multiferroic composite this Hamiltonian was expressed under the mean-field approximation. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.


Sign in / Sign up

Export Citation Format

Share Document