Quasi-stationary probability distribution for the SIR epidemic model

Author(s):  
Fahima Ouicher ◽  
Tewfik Kernane

In this paper, we propose two new approximations to the joint quasi-stationary distribution (QSD) of the number susceptible and infected individuals in the Susceptible-Infected-Recovered (SIR) stochastic epidemic model and we derive the marginal QSD of the infected individuals. These two approximations depend on the basic reproduction number [Formula: see text] and give a positive probability of the QSD to all the transient states. Numerical comparisons are presented to check the accuracy of these approximations.

2016 ◽  
Vol 09 (03) ◽  
pp. 1650042 ◽  
Author(s):  
Yanan Zhao ◽  
Daqing Jiang

In this paper, we introduce stochasticity into an SIR epidemic model with vaccination. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by the method of stochastic Lyapunov functions, we carry out a detailed analysis on the dynamical behavior of the stochastic model regarding of the basic reproduction number [Formula: see text]. If [Formula: see text], the solution of the model is oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministic model. If [Formula: see text], there is a stationary distribution and the solution has the ergodic property, which means that the disease will prevail.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, we study a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. For the deterministic model, we give the basic reproduction number $R_{0}$ R 0 which determines the extinction or prevalence of the disease. In addition, for the stochastic model, we prove existence and uniqueness of the positive solution, and extinction and persistence in mean. Furthermore, we give numerical simulations to verify our results.


2007 ◽  
Vol 15 (02) ◽  
pp. 203-218 ◽  
Author(s):  
WENJUN CAO ◽  
ZHEN JIN

In this paper, an SIR epidemic model with constant recruitment is considered. The dynamic behavior of this disease model with constant and pulse birth are analyzed. With constant birth, the infection-free equilibrium is locally and globally stable when the basic reproductive number R0 < 1. However, with pulse birth the system converges to a stable period solution with the number of infectious individuals equal to zero. Furthermore, the local and global stability of the periodic infection-free solution is obtained if the basic reproductive number [Formula: see text]. Numerical simulation shows that the periodic infection-free solution is unstable and the disease will persist when [Formula: see text]. The effectiveness of the constant and pulse birth to eliminating the disease are compared.


2009 ◽  
Vol 2009 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaohong Tian ◽  
Rui Xu

We investigate the stability of an SIR epidemic model with stage structure and time delay. By analyzing the eigenvalues of the corresponding characteristic equation, the local stability of each feasible equilibrium of the model is established. By using comparison arguments, it is proved when the basic reproduction number is less than unity, the disease free equilibrium is globally asymptotically stable. When the basic reproduction number is greater than unity, sufficient conditions are derived for the global stability of an endemic equilibrium of the model. Numerical simulations are carried out to illustrate the theoretical results.


Author(s):  
Chandan Maji

In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350041
Author(s):  
ZHENJIE LIU ◽  
JINLIANG WANG ◽  
YALAN XU ◽  
GUOQIANG LI

In this paper, we present a differential infectivity SIR epidemic model with modified saturation incidences and stochastic perturbations. We show that the stochastic epidemic model has a unique global positive solution, and we utilize stochastic Lyapunov functions to show the asymptotic behavior of the solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yanan Zhao ◽  
Daqing Jiang

We discuss a stochastic SIR epidemic model with vaccination. We investigate the asymptotic behavior according to the perturbation and the reproduction numberR0. We deduce the globally asymptotic stability of the disease-free equilibrium whenR0≤ 1and the perturbation is small, which means that the disease will die out. WhenR0>1, we derive that the disease will prevail, which is measured through the difference between the solution and the endemic equilibrium of the deterministic model in time average. The key to our analysis is choosing appropriate Lyapunov functions.


2019 ◽  
Vol 8 (2) ◽  
pp. 32
Author(s):  
Guiro Aboudramane ◽  
Dramane Ouedraogo ◽  
Harouna Ouedraogo

In this paper, we construct a backward difference scheme for a class of general SIR epidemic model with general incidence function f. We use the step size h > 0, for the discretization. The dynamical properties are investigated (positivity and the boundedness of solution). By constructing the Lyapunov function, under the conditions that function f satisfies some assumptions. The global stabilities of equilibria are obtained. If the basic reproduction number R0<1, the disease-free equilibrium is globally asymptotically stable. If R0>1, the endemic equilibrium is globally asymptotically stable.


2009 ◽  
Vol 02 (04) ◽  
pp. 443-461 ◽  
Author(s):  
MASAKI SEKIGUCHI

In this paper, we discuss some discrete epidemic models, that is, discrete SIR epidemic model with no delay, discrete SIR epidemic model with one delay and discrete SEIRS epidemic model with two delays. By applying the method given in Wang, Appl. Math. Lett. 15(2002) 423–428, we prove the permanence of these discrete epidemic models. These sufficient conditions are similar to the continuous epidemic models, that is, the basic reproduction number of each model is larger than one.


2010 ◽  
Vol 15 (3) ◽  
pp. 299-306 ◽  
Author(s):  
A. Kaddar

We formulate a delayed SIR epidemic model by introducing a latent period into susceptible, and infectious individuals in incidence rate. This new reformulation provides a reasonable role of incubation period on the dynamics of SIR epidemic model. We show that if the basic reproduction number, denoted, R0, is less than unity, the diseasefree equilibrium is locally asymptotically stable. Moreover, we prove that if R0 > 1, the endemic equilibrium is locally asymptotically stable. In the end some numerical simulations are given to compare our model with existing model.


Sign in / Sign up

Export Citation Format

Share Document