Impact of fear on delayed three species food-web model with Holling type-II functional response

Author(s):  
S. Magudeeswaran ◽  
S. Vinoth ◽  
K. Sathiyanathan ◽  
M. Sivabalan

This paper deals with the investigation of the three species food-web model. This model includes two logistically growing interaction species, namely [Formula: see text] and [Formula: see text], and the third species [Formula: see text] behaves as the predator and also host for [Formula: see text]. The species [Formula: see text] predating on the species [Formula: see text] with the Holling type-II functional response, while the first species [Formula: see text] is benefited from the third species [Formula: see text]. Further, the effect of fear is incorporated in the growth rate of species [Formula: see text] due to the predator [Formula: see text] and time lag in [Formula: see text] due to the gestation process. We explore all the biologically possible equilibrium points, and their local stability is analyzed based on the sample parameters. Next, we investigate the occurrence of Hopf-bifurcation around the interior equilibrium point by taking the value of the fear parameter as a bifurcation parameter for the non-delayed system. Moreover, we verify the local stability and existence of Hopf-bifurcation for the corresponding delayed system. Also, the direction and stability of the bifurcating periodic solutions are determined using the normal form theory and the center manifold theorem. Finally, we perform extensive numerical simulations to support the evidence of our analytical findings.

2020 ◽  
Vol 30 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Peng Yang ◽  
Yuanshi Wang

This paper is devoted to the study of a new delayed eco-epidemiological model with infection-age structure and Holling type II functional response. Firstly, the disease transmission rate function among the predator population is treated as the piecewise function concerning the incubation period [Formula: see text] of the epidemic disease and the model is rewritten as an abstract nondensely defined Cauchy problem. Besides, the prerequisite which guarantees the presence of the coexistence equilibrium is achieved. Secondly, via utilizing the theory of integrated semigroup and the Hopf bifurcation theorem for semilinear equations with nondense domain, it is found that the model exhibits a Hopf bifurcation near the coexistence equilibrium, which suggests that this model has a nontrivial periodic solution that bifurcates from the coexistence equilibrium as the bifurcation parameter [Formula: see text] crosses the bifurcation critical value [Formula: see text]. That is, there is a continuous periodic oscillation phenomenon. Finally, some numerical simulations are shown to support and extend the analytical results and visualize the interesting phenomenon.


2009 ◽  
Vol 02 (02) ◽  
pp. 139-149 ◽  
Author(s):  
LINGSHU WANG ◽  
RUI XU ◽  
GUANGHUI FENG

A predator–prey model with time delay and Holling type-II functional response is investigated. By choosing time delay as the bifurcation parameter and analyzing the associated characteristic equation of the linearized system, the local stability of the system is investigated and Hopf bifurcations are established. The formulae determining the direction of bifurcations and the stability of bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950047 ◽  
Author(s):  
Xin-You Meng ◽  
Jiao-Guo Wang

In this paper, a delayed diffusive phytoplankton-zooplankton model with Beddington–DeAngelis functional response and toxins is investigated. Existence of equilibria of the system are solved. The global asymptotic stability of the zooplankton-free equilibrium is obtained. The local stability of the coexistent equilibrium and existence of Hopf bifurcation are discussed. In addition, the properties of the Hopf bifurcation are studied based on the center manifold and normal form theory for partial differential equations. Finally, some numerical simulations are also carried out to confirm our theoretical analysis.


2021 ◽  
Author(s):  
Chongming Li

The dynamical behaviours of the predators and prey can be described by studying the local stability of the planar systems. Type I functional response shows that the rate of consumption per predator is proportional to prey’s density while type II functional response is related to the situation that predators would reach satiation as they consumed sufficient amount of prey. We seek out a method of using transformation to reduce the number of parameters of original models and then study the stability analysis of equilibrium points. Under suitable restrictions on the new parameters, we prove that the positive interior equilibrium is a stable node for the system of type I and type II functional responses. Moreover, in the case of type II functional response, the boundary equilibria can have more types of stability other than saddle points.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Xiao-Ke Sun ◽  
Hai-Feng Huo ◽  
Xiao-Bing Zhang

A predator-prey system with Holling type II functional response and stage structure for prey is presented. The local and global stability are studied by analyzing the associated characteristic transcendental equation and using comparison theorem. The existence of a Hopf bifurcation at the positive equilibrium is also studied. Some numerical simulations are also given to illustrate our results.


2021 ◽  
Author(s):  
Chongming Li

The dynamical behaviours of the predators and prey can be described by studying the local stability of the planar systems. Type I functional response shows that the rate of consumption per predator is proportional to prey’s density while type II functional response is related to the situation that predators would reach satiation as they consumed sufficient amount of prey. We seek out a method of using transformation to reduce the number of parameters of original models and then study the stability analysis of equilibrium points. Under suitable restrictions on the new parameters, we prove that the positive interior equilibrium is a stable node for the system of type I and type II functional responses. Moreover, in the case of type II functional response, the boundary equilibria can have more types of stability other than saddle points.


Sign in / Sign up

Export Citation Format

Share Document