ACCEPTOR MODULATED DEFECT AND ELECTRONIC STRUCTURES IN FERROELECTRIC LEAD TITANATE: AN AB INITIO STUDY

2008 ◽  
Vol 01 (02) ◽  
pp. 121-126 ◽  
Author(s):  
ZHEN ZHANG ◽  
PING WU ◽  
LI LU ◽  
CHANG SHU

Defects and electronic structures of the aliovalent acceptors substituted lead titanates were studied using density functional theory calculations. Three types of defect structures are identified in 3d transition metal and the group IIB and VB elements substituted systems. Cr substitute and oxygen vacancies are found to be dissociated from each other, forming an isolated point defect structure. In contrast, all other substitutes favor the immobile acceptor–oxygen–vacancy–acceptor defect clusters which weaken the space charge effects by limiting the motions of oxygen vacancies. Furthermore, two distinct defect-cluster structures (along the z direction and in the xy plane, respectively) are observed. We conclude that the defect structure in the xy plane induces head-to-head polarization patterns, which make the domain pinning effects even weaker. The electronic structures due to elements substitutions are also investigated and compared.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Long Lin ◽  
Linwei Yao ◽  
Shaofei Li ◽  
Zhengguang Shi ◽  
Kun Xie ◽  
...  

AbstractFinding the active sites of suitable metal oxides is a key prerequisite for detecting CH$$_4$$ 4 . The purpose of the paper is to investigate the adsorption of CH$$_4$$ 4 on intrinsic and oxygen-vacancies CuO (111) and (110) surfaces using density functional theory calculations. The results show that CH$$_4$$ 4 has a strong adsorption energy of −0.370 to 0.391 eV at all site on the CuO (110) surface. The adsorption capacity of CH$$_4$$ 4 on CuO (111) surface is weak, ranging from −0.156 to −0.325 eV. In the surface containing oxygen vacancies, the adsorption capacity of CuO surface to CH$$_4$$ 4 is significantly stronger than that of intrinsic CuO surface. The results indicate that CuO (110) has strong adsorption and charge transfer capacity for CH$$_4$$ 4 , which may provide experimental guidance.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 760-769 ◽  
Author(s):  
Shuguang Zhang ◽  
Ning Han ◽  
Xiaoyao Tan

Spin-polarized DFT calculations were used to investigate the atomic, electronic structures of LaCoO3and La1−xSrxCoO3surfaces. The thermodynamic stability of these surfaces was analyzed with phase diagrams. Influence of Sr-doping was also examined.


Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 441 ◽  
Author(s):  
Nisha Geng ◽  
Tiange Bi ◽  
Niloofar Zarifi ◽  
Yan Yan ◽  
Eva Zurek

Interest in Na-S compounds stems from their use in battery materials at 1 atm, as well as the potential for superconductivity under pressure. Evolutionary structure searches coupled with Density Functional Theory calculations were employed to predict stable and low-lying metastable phases of sodium poor and sodium rich sulfides at 1 atm and within 100–200 GPa. At ambient pressures, four new stable or metastable phases with unbranched sulfur motifs were predicted: Na2S3 with C 2 / c and Imm2 symmetry, C 2 -Na2S5 and C 2 -Na2S8. Van der Waals interactions were shown to affect the energy ordering of various polymorphs. At high pressure, several novel phases that contained a wide variety of zero-, one-, and two-dimensional sulfur motifs were predicted, and their electronic structures and bonding were analyzed. At 200 GPa, P 4 / m m m -Na2S8 was predicted to become superconducting below 15.5 K, which is close to results previously obtained for the β -Po phase of elemental sulfur. The structures of the most stable M3S and M4S, M = Na, phases differed from those previously reported for compounds with M = H, Li, K.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4326
Author(s):  
Fan Yang ◽  
Ruizhuang Yang ◽  
Lin Yan ◽  
Jiankun Wu ◽  
Xiaolin Liu ◽  
...  

Vacancies in semiconductors can play a versatile role in boosting their photocatalytic activity. In this work, a novel TiO2/Cu/TiO2 sandwich structure is designed and constructed. Abundant vacancies were introduced in TiO2 lattice by Cu reduction under heat treatment. Meanwhile, Cu atom could diffuse into TiO2 to form Cu-doped TiO2. The synergistic effect between oxygen vacancies and Cu atoms achieved about 2.4 times improved photocurrent of TiO2/Cu/TiO2 sandwich structure compared to bare TiO2 thin film. The enhanced photoactivity may be attributed to regulated electron structure of TiO2 by oxygen vacancies and Cu dopant from experimental results and density functional theory calculations. Oxygen vacancies and Cu dopant in TiO2 formed through copper metal reduction can introduce impurity levels and narrow the band gap of TiO2, thus improve the visible light response. More importantly, the Cu2+ and oxygen vacancies in TiO2 lattice can dramatically increase the charge density around conduction band and promote separation of photo-induced charge carriers. Furthermore, the oxygen vacancies on the surface may serve as active site for sufficient chemical reaction. This work presents a novel method to prepare doped metal oxides catalysts with abundant vacancies for improving photocatalytic activity.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 39988-39994
Author(s):  
Zongzi Jin ◽  
Ranran Peng ◽  
Yunpeng Xia ◽  
Zhenbin Wang ◽  
Wei Liu

Density functional theory calculations are employed to investigate the formation and conducting behaviors of oxygen vacancies and proton defects in Ruddlesden–Popper oxide SrEu2Fe2O7.


RSC Advances ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 8364-8368 ◽  
Author(s):  
Lanling Zhao ◽  
Jun Wang ◽  
Zhigang Gai ◽  
Jichao Li ◽  
Jian Liu ◽  
...  

Density functional theory calculations were conducted to investigate the electronic structures of rutile Ti16O32, Ti13Nb2InO32, and Ti13Nb2InO31 systems.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750036
Author(s):  
Yujie Bai ◽  
Qinfang Zhang ◽  
Fubao Zheng ◽  
Yun Yang ◽  
Qiangqiang Meng ◽  
...  

Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.


2015 ◽  
Vol 3 (20) ◽  
pp. 10720-10723 ◽  
Author(s):  
Peng Li ◽  
Naoto Umezawa ◽  
Hideki Abe ◽  
Jinhua Ye

New vanadate photocatalysts, Ag2Sr(VO3)4 and Sr(VO3)2, are theoretically designed for water oxidation reactions. The calculations have shown that the new photocatalysts possess desirable electronic structures. Our experiments demonstrated that these vanadates efficiently oxidize water to O2 under irradiation of visible light.


Sign in / Sign up

Export Citation Format

Share Document