rich condition
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 1)

Energy ◽  
2021 ◽  
pp. 121078
Author(s):  
Yu Wang ◽  
Jianfeng Pan ◽  
Junfeng Wang ◽  
Qingbo Lu ◽  
Yangxian Liu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiadai An ◽  
Xianying Dai ◽  
Runqiu Guo ◽  
Lansheng Feng ◽  
Tianlong Zhao

Abstract Since AlGaN offers new opportunities for the development of the solid state ultraviolet (UV) luminescence, detectors and high-power electronic devices, the growth of AlN buffer substrate is concerned. However, the growth of AlN buffer substrate during MOCVD is regulated by an intricate interplay of gas-phase and surface reactions that are beyond the resolution of experimental techniques, especially the surface growth process. We used density-functional ab initio calculations to analyze the adsorption, decomposition and desorption of group-III and group-V sources on AlN surfaces during MOCVD growth in molecular-scale. For AlCH3 molecule the group-III source, the results indicate that AlCH3 is more easily adsorbed on AlN (0001) than (000$$\overline{1}$$ 1 ¯ ) surface on the top site. For the group-V source decomposition we found that NH2 molecule is the most favorable adsorption source and adsorbed on the top site. We investigated the adsorption of group-III source on the reconstructed AlN (0001) surface which demonstrates that NH2-rich condition has a repulsion effect to it. Furthermore, the desorption path of group-III and group-V radicals has been proposed. Our study explained the molecular-scale surface reaction mechanism of AlN during MOCVD and established the surface growth model on AlN (0001) surface.


2020 ◽  
Vol 7 (7) ◽  
pp. 191653
Author(s):  
Yan-li Zhu ◽  
Cong-Jie Wang ◽  
Fei Gao ◽  
Zhi-xia Xiao ◽  
Peng-long Zhao ◽  
...  

Density functional theory was employed to investigate the (111), (200), (210), (211) and (220) surfaces of CoS 2 . The surface energies were calculated with a sulfur environment using first-principle-based thermodynamics. It is founded that surfaces with metal atoms at their outermost layer have higher energy. The stoichiometric (220) surface terminated by two layer of sulfur atoms is most stable under the sulfur-rich condition, while the non-stoichiometric (211) surface terminated by a layer of Co atoms has the lower energy under the sulfur-poor environment. The electric structure results show that the front valence electrons of (200) surface are active, indicating that there may be some active sites on this face. There is an energy gap between the stoichiometric (220) and (211), which has low Fermi energy, indicating that their electronic structures are dynamically stable. Spin-polarized bands are calculated on the stoichiometric surfaces, and these two (200) and (210) surfaces are predicted to be noticeably spin-polarized. The Bravais–Friedel–Donnay–Harker (BFDH) method is adopted to predict crystal growth habit. The results show that the most important crystal planes for the CoS 2 crystal growth are (111) and (200) planes, and the macroscopic morphology of CoS 2 crystal may be spherical, cubic, octahedral, prismatic or plate-shaped, which have been verified by experiments.


2020 ◽  
Vol 34 (17) ◽  
pp. 2050147
Author(s):  
Yuqin Guan ◽  
Qingyu Hou ◽  
Danyang Xia

The effect of intrinsic point defects on the electronic structure and absorption spectra of ZnO was investigated by first-principle calculation. Among the intrinsic point defects in ZnO, oxygen vacancies [Formula: see text] and interstitial zinc [Formula: see text] have the lower formation energy and the more stable structure under zinc(Zn)-rich condition, whereas zinc vacancies [Formula: see text] and interstitial oxygen [Formula: see text] have the lower formation energy and the more stable structure under oxygen(O)-rich condition. The band gap of [Formula: see text] becomes narrow and the absorption spectrum has a redshift. In the visible region, the photo-excited electron transition of [Formula: see text] is graded from the valence band top to the impurity level and then to the conduction band bottom, showing the redshift of absorption spectrum of [Formula: see text] and explaining the reason of [Formula: see text] forming a deep impurity levels in ZnO. Moreover, the impurity energy level of [Formula: see text] coincides with the Fermi level, indicating the significant trap effect and the slow recombination of electrons and holes, which are conducive to the design and preparation of novel ZnO photocatalysts. The band gap of [Formula: see text] and [Formula: see text] broadened and the absorption spectrum showed blueshift, explaining the different values of the ZnO band gap width.


2020 ◽  
Vol 116 (21) ◽  
pp. 212101
Author(s):  
Yuejin Wang ◽  
Guozhen Liu ◽  
Shiqiang Lu ◽  
Hongye Zhang ◽  
Bin Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document