Microstructure and thermoelectric properties of Ga-DOPED SiGe alloys prepared by mechanical alloying and induction hot pressing

2014 ◽  
Vol 07 (02) ◽  
pp. 1450008 ◽  
Author(s):  
Shanshan Lin ◽  
Chunlin Wang ◽  
Haiyan Chen ◽  
Dexuan Huo ◽  
Nick Savvides ◽  
...  

Ga -doped SiGe alloys were prepared by high energy ball milling followed by induction hot pressing. The grain size decreases dramatically with increasing mill time, and nanostructured features in the range 3–500 nm were introduced after extensive ball milling for 2–12 h. The bulk alloys hot pressed from 2 h and 6 h dry-milled powders consist of different compositions of micron- to nanosized Si y Ge 100-y, where Ga prefers to locate in the submicron- and nanosized Ge -rich phase and form a modulation-doping structure. The samples hot pressed from 12 h wet-milled powders are more homogeneous in microstructure and composition. Property characterization shows that although Ga -doping leads to p-type conduction, only part of Ga atoms is incorporated as dopant in the SiGe solid solution phase. Samples hot pressed from 2 h and 6 h dry-milled powders have higher power factors, while those hot pressed from 12 h wet-milled powders posses much lower thermal conductivity. The maximum figure of merit (ZT) is 0.51 at 805°C for the 6 h dry-milled and hot pressed sample with the nominal composition Si 80 Ge 18 Ga 2.

2016 ◽  
pp. 002199831667370 ◽  
Author(s):  
Shubhadeep Maity ◽  
Sumit Chabri ◽  
Subhranshu Chatterjee ◽  
Supriya Bera ◽  
Arijit Sinha

2007 ◽  
Vol 353-358 ◽  
pp. 1505-1508
Author(s):  
Zhi Hua Yang ◽  
Yu Zhou ◽  
De Chang Jia ◽  
Qing Chang Meng ◽  
Chang Qing Yu

Amorphous Si-B-C-N ceramics obtained by high energy ball milling and hot pressing using hexagonal boron nitride (h-BN), graphite (C) and amorphous Si as starting materials have been studied. The mechanical milling with high energy resulted in the generation of large amounts of amorphous composites only milled for 5 h. Si-B-C-N powders were consolidation by hot pressing at 1850 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) show that small amount of BN and SiC crystal lies in the amorphous matrix. The flexural strength reached the maximal value of 137.2 MPa at a mole ratio of BN/(Si+C) being 0.6.


2014 ◽  
Vol 802 ◽  
pp. 29-34
Author(s):  
Leandro Koji Kayano ◽  
Daniel Murusawa ◽  
Gilda Maria Cortez Pereira ◽  
Alfeu Saraiva Ramos

This work presents the results on the high-energy ball milling and hot pressing of Ni-48Ti-2Sn and Ni-45Ti-5Sn (at-%) powder mixtures. The milling process was performed in a planetary ball mill using stainless steel vial (225 mL) and hardened steel balls (19 mm diameter), rotary speed of 300 rpm, and a ball-to-powder weight ratio of 10:1. Samples were collected into the vial after different milling times: 60, 180 and 300 min. In the sequence, wet milling (isopropyl alcohol) was adopted up to 720 min in order to increase the powder yield into the vials. The as-milled and hot-pressed samples were characterized by X-ray diffraction, electron scanning microscopy, and energy dispersive spectrometry. Results indicated that the ductile particles were promptly cold-welded during the initial milling times. XRD patterns of the Ni-48Ti-2Sn powder mixture indicated that the peaks of Ni, Ti and Sn disappeared after milling for 3h. Following, peaks of NiTi and Ni4Ti3were preferentially formed during milling of Ni-Ti-Sn powders. A large amount of fine powders was yielded into the vial after wet milling for 720 min only. No significant carbon or oxygen contamination was detected by EDS analysis. Hot pressing produced homogeneous and dense samples which presented microstructures containing a large amount of the NiTi compound.


2008 ◽  
Vol 584-586 ◽  
pp. 97-101 ◽  
Author(s):  
T. Shanmugasundaram ◽  
V. Subramanya Sarma ◽  
B.S. Murty ◽  
Martin Heilmaier

The microstructure and mechanical properties of nano-crystalline 2219 Al alloy (Al-6.4Cu-0.29Mn, all in wt %) was studied. Nanocrystalline powders were produced from gas atomized 2219 Al alloy powders by high energy ball milling at room temperature. Powders were collected at different milling times and X-ray diffraction (XRD) analysis was used to evaluate grain size. High Vickers hardness (250HV), high compressive strength (920 MPa) and low ductility (2%) were observed in unimodal bulk nanostructured 2219 Al alloys consolidated to 99% density by hot pressing (HP). In addition, these nanocrystalline powders were blended with 15, 30 and 50% of (gas atomized) coarse-grained powders to obtain balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness as compared to either conventional or nanocrystalline 2219 alloys.


2012 ◽  
Vol 727-728 ◽  
pp. 233-238
Author(s):  
Gilda Maria Cortez Pereira ◽  
Marisa Aparecida de Souza ◽  
Tomaz Manabu Hashimoto ◽  
Vinicius André Rodrigues Henriques ◽  
Alfeu Saraiva Ramos

This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900°C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.


2021 ◽  
Vol 13 (36) ◽  
pp. 43011-43021
Author(s):  
Xian Luo ◽  
Bowei Huang ◽  
Xiang Guo ◽  
Wenjie Lu ◽  
Guiyuan Zheng ◽  
...  

2015 ◽  
Vol 815 ◽  
pp. 276-280 ◽  
Author(s):  
Qian Shen ◽  
Yi Long Ma ◽  
Jun Dong ◽  
Deng Ming Chen

Two kinds of 2:17R Sm-Co alloys, Sm2(Fe,Cu,Zr,Co)17 and pure binary Sm2Co17 were prepared, and the amorphous powder was prepared by high-energy ball milling Sm-Co alloys. The bulk nanocrystalline SmCo7 was prepared by hot-pressing the amorphous powder, and the magnetic properties and phase composition were studied. Initial Sm2(Fe,Cu,Zr,Co)17 showed a large value of coercivity while the pure Sm2Co17 almost showed no coercivity. However, after ball milling the grain size of alloys decreased dramatically until completely amorphous. Two kinds of alloys showed the different phase composition and magnetic properties after hot-pressing. It was found that the pure Sm2Co17 bulk magnet showed a high coercivity Hc and had the 1:7H phase. On the other hand, the Sm2(Fe,Cu,Zr,Co)17 showed high saturation magnetization Ms and very low Hc since the Fe-Co and Sm2Co3 phase were precipitated from the alloy.


Sign in / Sign up

Export Citation Format

Share Document