Improving photovoltaic performance of perovskite solar cells: The interfacial modification role of aluminum chloride and ammonia on ZnO nanorods

2017 ◽  
Vol 10 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Zhaosong Li ◽  
Jun Zhang ◽  
Yang Xu ◽  
Mengni Xue ◽  
Hanbin Wang ◽  
...  

ZnO nanorods (ZnO NRs) as electron transport layer (ETL) in organometal halide perovskite solar cells (PSCs) had been prepared because of ZnO exhibiting excellent electron mobility and light transmission performance. The ZnO NRs were modified with a simple solvothermal method using aluminum chloride (AlCl3) and ammonia (NH[Formula: see text]H2O) as precursor solution, the primary advantage of this approach was low temperature, simple process. The concentration of the precursor solution was further investigated, and a power conversion efficiency (PCE) of 12.1% was achieved.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


RSC Advances ◽  
2017 ◽  
Vol 7 (46) ◽  
pp. 28610-28615 ◽  
Author(s):  
P. S. Chandrasekhar ◽  
Vamsi K. Komarala

Perovskite solar cells (PSCs) have been fabricated by a graphene/ZnO nanocomposite (G/ZnO NC) as an electron transporting layer.


2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Hamed Moeini Alishah ◽  
Fatma Pinar Gokdemir Choi ◽  
Ugur Deneb Menda ◽  
Cihangir Kahveci ◽  
Macide Canturk Rodop ◽  
...  

Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag.  Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1269 ◽  
Author(s):  
Wu ◽  
Thakur ◽  
Chiang ◽  
Chandel ◽  
Wang ◽  
...  

The power conversion efficiency (PCE) of single-junction solar cells was theoretically predicted to be limited by the Shockley–Queisser limit due to the intrinsic potential loss of the photo-excited electrons in the light absorbing materials. Up to now, the optimized GaAs solar cell has the highest PCE of 29.1%, which is close to the theoretical limit of ~33%. To pursue the perfect photovoltaic performance, it is necessary to extend the lifetimes of the photo-excited carriers (hot electrons and hot holes) and to collect the hot carriers without potential loss. Thanks to the long-lived hot carriers in perovskite crystal materials, it is possible to completely convert the photon energy to electrical power when the hot electrons and hot holes can freely transport in the quantized energy levels of the electron transport layer and hole transport layer, respectively. In order to achieve the ideal PCE, the interactions between photo-excited carriers and phonons in perovskite solar cells has to be completely understood.


2019 ◽  
Vol 7 (4) ◽  
pp. 937-942 ◽  
Author(s):  
Jinbiao Jia ◽  
Jia Dong ◽  
Jianming Lin ◽  
Zhang Lan ◽  
Leqing Fan ◽  
...  

Perovskite solar cells assembled with titanium dioxide electron transport layer exhibited brilliant photovoltaic properties due to titanium dioxide having a high electron mobility, appropriate energy level alignment and easy fabrication procedure.


2019 ◽  
Vol 7 (17) ◽  
pp. 5028-5036 ◽  
Author(s):  
M. Thambidurai ◽  
Shini Foo ◽  
K. M. Muhammed Salim ◽  
P. C. Harikesh ◽  
Annalisa Bruno ◽  
...  

Simultaneous improvement in transparency, conductivity, and energy level alignment was attained via a highly efficient AlIn-TiO2 ETL with the unrivaled PCE of 19%.


2020 ◽  
Vol 44 (21) ◽  
pp. 8902-8909
Author(s):  
Yinyi Huang ◽  
Shina Li ◽  
Chaorong Wu ◽  
Shuo Wang ◽  
Chengyan Wang ◽  
...  

The electron transport layer (ETL) between the perovskite material and cathode plays an important role in planar perovskite solar cells.


Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16249-16255 ◽  
Author(s):  
Kisu Lee ◽  
Jaehoon Ryu ◽  
Haejun Yu ◽  
Juyoung Yun ◽  
Jungsup Lee ◽  
...  

In this work, a phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer was modified with Triton X-100, and this improved the photovoltaic performance and air-stability of perovskite solar cells.


2017 ◽  
Vol 5 (26) ◽  
pp. 13439-13447 ◽  
Author(s):  
Jiaxing Song ◽  
Leijing Liu ◽  
Xiao-Feng Wang ◽  
Gang Chen ◽  
Wenjing Tian ◽  
...  

Although ZnO is a compatible electron transport layer (ETL) for perovskite solar cells (PSCs), the fact that MAPbI3 easily undergoes thermal decomposition on a low-temperature processed ZnO surface limits the use of one-step deposition of perovskite and hence the resulting photovoltaic performance. The triple cation perovskite prepared with a one-step deposition method is demonstrated to be a stable light absorber in highly efficient PSCs with low-temperature processed ZnO as the ETL.


Sign in / Sign up

Export Citation Format

Share Document