applied electrical field
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
pp. 694-703
Author(s):  
Alina V Dvornichenko ◽  
Vasyl O Kharchenko ◽  
Dmitrii O Kharchenko

We provide a computational study of a change in the morphology of a growing thin film during condensation caused by electromigration effects. It will be shown, that separated circular adsorbate islands, realized in an isotropic system, become elongated in the direction of the applied electrical field. We discuss the dependence of the critical value of the strength of the applied electrical field, responsible for the formation of percolating adsorbate islands, on main control parameters. This study provides insight into details of electromigration effects during the self-organization of adatoms into percolating adsorbate islands during condensation from the gaseous phase. We will show that the elongated morphology of adsorbate islands remains stable if the electric field is turned off.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


2021 ◽  
Vol 5 (2) ◽  
Author(s):  
E.C. Lima ◽  
J.D.S. Guerra ◽  
E.B. Araujo

The dynamic dielectric response of Pb(Mg1/3Nb2/3 )O3 ceramic was experimentally studied as a function of the EAC amplitude field. An increase in real dielectric permittivity was obtained by increasing the applied electrical field within the investigated temperature range for frequencies below 10 kHz. The temperature of maximum dielectric permittivity and freezing temperature decreased with an increase in E AC. Nonlinear permittivity was studied and found to behave similarly to freezing temperature. A statistical model was used to fit the dielectric dispersion of real dielectric permittivity with temperature and frequency. The results are discussed in terms of different factors’ contributions to dielectric permittivity under different EAC field conditions.


2019 ◽  
Vol 7 (2) ◽  
pp. 278-284 ◽  
Author(s):  
Shuyu Xiao ◽  
Yaming Jin ◽  
Xiaomei Lu ◽  
Sang-Wook Cheong ◽  
Jiangyu Li ◽  
...  

Abstract Ferroelectric domain walls differ from domains not only in their crystalline and discrete symmetry, but also in their electronic, magnetic, and mechanical properties. Although domain walls provide a degree of freedom to regulate the physical properties at the nanoscale, the relatively lower controllability prevents their practical applications in nano-devices. In this work, with the advantages of 3D domain configuration detection based on piezoresponse force microscopy, we find that the mobility of three types of domain walls (tail-to-tail, head-to-tail, head-to-head) in (001) BiFeO3 films varies with the applied electrical field. Under low voltages, head-to-tail domain walls are more mobile than other domain walls, while, under high voltages, tail-to-tail domain walls become rather active and possess relatively long average lengths. This is due to the high nucleation energy and relatively low growth energy for charged domain walls. Finally, we demonstrate the manipulation of domain walls through successive electric writings, resulting in well-aligned conduction paths as designed, paving the way for their application in advanced spintronic, memory and communication nano-devices.


2019 ◽  
Vol 9 (6) ◽  
pp. 4522-4533 ◽  

In this study, D,L-ampicillin separation was carried out by ligand exchange-micellar electrokinetic chromatography method using L-Lysine monohydrochloride as a ligand and copper (II) sulfate pentahydrate is a central ion supplier. Isomeric separations were performed using capillary electrophoresis (CE) instrument, in which SDS-L-Lys-Cu+2 micelle complex was used as a pseudostationary phase. The effect of pH, SDS amount, applied electrical field, pressure, organic solvent ratio and ampicillin D,L-ratios were investigated. Fast, inexpensive and sensitive approach for the simultaneous separation of D,L-ampicillin in both aqueous and real antibiotic sample was performed using CE coupled with UV detector. The separation was achieved in a short period of 7 minutes with high-sensitivity and low-detection limit of 1.25 μM by the developed SDS-L-Lys-Cu+2 micelle-chiral selector complexes without using any extra process such as imprinting or spacer arms for the immobilization of the ligands.


2019 ◽  
Vol 354 ◽  
pp. 743-749
Author(s):  
Haifeng Wang ◽  
Xuejie Bai ◽  
Zhen Peng ◽  
Xiaolu Zhao ◽  
Jinshan Yang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jennifer A. Pascal ◽  
Koteswara Rao Medidhi ◽  
Mario A. Oyanader ◽  
Holly A. Stretz ◽  
Pedro E. Arce

The collaborative effects between an applied orthogonal electrical field and the internal structure of polymer gels in gel electrophoresis is studied by using microscopic-based electrophoretic transport models that then are upscaled via the format of electro kinetics-hydrodynamics (EKHD). The interplay of the electrical field and internal gel morphology could impact the separation of biomolecules that, because of similar chemical properties, are usually difficult to separate. In this study, we focus on an irregular pore geometry of the polymer-gel structure by using an axially varying pore (i.e., an axially divergent section) and an orthogonal (to the main flow of solutes) applied electrical field. The microscopic-based conservation of species equation is formulated for the standard case of electrophoresis of charged particles within a geometrical domain, i.e., a pore, and upscaled to obtain macroscopic-based diffusion and mobility coefficients. These coefficients are then used in the calculation of the optimal time of separation to study the effect of the varying parameters of the pore structure under different values of the electrical field. The results are qualitatively consistent with those reported, in the literature, by using computational-based approaches as well as with experiments also reported in the literature, previously. The study shows the important collaborative effects between the applied electrical field and the internal geometry of the polymer gels that could lead to improving biomolecule separation in gel electrophoresis.


2019 ◽  
Vol 11 (22) ◽  
pp. 56-63
Author(s):  
Hussein Neama Najeeb

                The electrical characteristics of polyvinyl alcohol PVA doped with different concentrations (0, 1, 2, 3 and 4wt%) of sodium  iodide NaI powder were studied. The films are prepared using solution casting technique, in order to investigate the effect of sodium iodide NaI additions on the electrical properties of PVA host. The D.C conductivity measured by measuring the D.C electrical resistance using the Keithly Electrometer type 616C, and for different temperatures ranging from 30 – 70oC.           The dielectric properties measured by measuring the capacitor and the loss angle tangent as a function of the alternating electric field frequency using the Agilent impedance analyzer 4294A, within the frequency range 50 – 6 ×106 Hz at room temperature.  The experimental results showed that the dielectric constant is decrease with increase frequency of applied electrical field and increase with increasing concentrations, dielectric loss is increase with increasing frequency of applied electrical field to be 1MHz after this it was decreasing, A.C electrical conductivity are increasing with increasing frequency of applied electrical field, also, the results showed that the D.C electrical conductivity are increasing with increase concentration of NaI and temperature, activation energy are decreasing with increase concentration of additive salt.     


2019 ◽  
Vol 12 (25) ◽  
pp. 105-112
Author(s):  
Ahamad A. Hasan

Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.


2019 ◽  
Vol 9 (3) ◽  
pp. 507 ◽  
Author(s):  
Liangping Xia ◽  
Xin Zhang ◽  
Man Zhang ◽  
Suihu Dang ◽  
Shijian Huang ◽  
...  

A terahertz modulation structure based on hybrid metamaterial and graphene is proposed and demonstrated in this work. The metamaterial with a square slit ring array excites terahertz resonance in the slits and enhances the interaction between the terahertz wave and graphene. The graphene layer acting as the active material is tuned by the applied electrical field. With the separation by a dielectric layer between the graphene and the metallic structure, the resonant frequency and transmitted energy are both modulated by the graphene. Experimental result indicates that the modulation depth of the terahertz transmitted amplitude is 65.1% when the applied modulation voltage is tuned 5 V.


Sign in / Sign up

Export Citation Format

Share Document