scholarly journals ABSOLUTELY SECURE MESSAGE TRANSMISSION USING A KEY SHARING GRAPH

2012 ◽  
Vol 04 (04) ◽  
pp. 1250053 ◽  
Author(s):  
YOSHIHIRO INDO ◽  
TAKAAKI MIZUKI ◽  
TAKAO NISHIZEKI

Assume that there are players and an eavesdropper Eve of unlimited computational power and that several pairs of players have shared secret keys beforehand. In a key sharing graph, each vertex corresponds to a player, and each edge corresponds to a secret key shared by the two players corresponding to the ends of the edge. Given a key sharing graph, a player wishes to send a message to another player so that the eavesdropper Eve and any other player can get no information on the message. In this paper, we first give a necessary and sufficient condition on a key sharing graph for the existence of such a unicast protocol. We then extend the condition to the case where a multiple number of players other than the sender and receiver passively collude. We finally give a sufficient condition for the existence of a secure multicast protocol.

Author(s):  
Jun Muramatsu

Abstract Secret key distribution is a technique for a sender and a receiver to share a secret key, which is not known by any eavesdropper, when they share no common secret information in advance. By using this technique, the sender and the receiver can transmit a message securely in the sense that the message remains secret from any eavesdropper. We introduced a secret key distribution based on the Bounded Observability (Muramatsu et al. 2010, 2013, 2015), which provides a necessary and sufficient condition for the possibility of secret key distribution. This condition describes limits on the information obtained by observation of a random object, and models the practical difficulty of completely observing random physical phenomena.


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document