scholarly journals A combinatorial approach to quantum error correcting codes

2014 ◽  
Vol 06 (04) ◽  
pp. 1450054
Author(s):  
German Luna ◽  
Samuel Reid ◽  
Bianca De Sanctis ◽  
Vlad Gheorghiu

Motivated from the theory of quantum error correcting codes, we investigate a combinatorial problem that involves a symmetric n-vertices colorable graph and a group of operations (coloring rules) on the graph: find the minimum sequence of operations that maps between two given graph colorings. We provide an explicit algorithm for computing the solution of our problem, which in turn is directly related to computing the distance (performance) of an underlying quantum error correcting code. Computing the distance of a quantum code is a highly non-trivial problem and our method may be of use in the construction of better codes.

2012 ◽  
Vol 26 (04) ◽  
pp. 1250024
Author(s):  
YUAN LI ◽  
MANTAO XU ◽  
QIANG SUN

Graphical approach provides a more intuitive and simple way to construct error correction codes. How to obtain generator matrix is the key problem of constructing graphical quantum codes. In this paper, we further generalize the graphical quantum code construction method by entangling its disconnected subgraphs, so that the corresponding generator matrix of quantum nondegenerate codes can be easily obtained. By making use of the method of subgraphs entangling, we also point out its application in adjacency matrix constructions of larger colorable graph and graphical quantum nested codes.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450017 ◽  
Author(s):  
RUIHU LI ◽  
GEN XU ◽  
LUOBIN GUO

In this paper, we discuss two problems on asymmetric quantum error-correcting codes (AQECCs). The first one is on the construction of a [[12, 1, 5/3]]2 asymmetric quantum code, we show an impure [[12, 1, 5/3 ]]2 exists. The second one is on the construction of AQECCs from binary cyclic codes, we construct many families of new asymmetric quantum codes with dz> δ max +1 from binary primitive cyclic codes of length n = 2m-1, where δ max = 2⌈m/2⌉-1 is the maximal designed distance of dual containing narrow sense BCH code of length n = 2m-1. A number of known codes are special cases of the codes given here. Some of these AQECCs have parameters better than the ones available in the literature.


Author(s):  
Todd A. Brun

Quantum error correction is a set of methods to protect quantum information—that is, quantum states—from unwanted environmental interactions (decoherence) and other forms of noise. The information is stored in a quantum error-correcting code, which is a subspace in a larger Hilbert space. This code is designed so that the most common errors move the state into an error space orthogonal to the original code space while preserving the information in the state. It is possible to determine whether an error has occurred by a suitable measurement and to apply a unitary correction that returns the state to the code space without measuring (and hence disturbing) the protected state itself. In general, codewords of a quantum code are entangled states. No code that stores information can protect against all possible errors; instead, codes are designed to correct a specific error set, which should be chosen to match the most likely types of noise. An error set is represented by a set of operators that can multiply the codeword state. Most work on quantum error correction has focused on systems of quantum bits, or qubits, which are two-level quantum systems. These can be physically realized by the states of a spin-1/2 particle, the polarization of a single photon, two distinguished levels of a trapped atom or ion, the current states of a microscopic superconducting loop, or many other physical systems. The most widely used codes are the stabilizer codes, which are closely related to classical linear codes. The code space is the joint +1 eigenspace of a set of commuting Pauli operators on n qubits, called stabilizer generators; the error syndrome is determined by measuring these operators, which allows errors to be diagnosed and corrected. A stabilizer code is characterized by three parameters [[n,k,d]], where n is the number of physical qubits, k is the number of encoded logical qubits, and d is the minimum distance of the code (the smallest number of simultaneous qubit errors that can transform one valid codeword into another). Every useful code has n>k; this physical redundancy is necessary to detect and correct errors without disturbing the logical state. Quantum error correction is used to protect information in quantum communication (where quantum states pass through noisy channels) and quantum computation (where quantum states are transformed through a sequence of imperfect computational steps in the presence of environmental decoherence to solve a computational problem). In quantum computation, error correction is just one component of fault-tolerant design. Other approaches to error mitigation in quantum systems include decoherence-free subspaces, noiseless subsystems, and dynamical decoupling.


2006 ◽  
Vol 04 (06) ◽  
pp. 1013-1022
Author(s):  
TAILIN LIU ◽  
FENGTONG WEN ◽  
QIAOYAN WEN

Based on the classical binary simplex code [Formula: see text] and any fixed-point-free element f of [Formula: see text], Calderbank et al. constructed a binary quantum error-correcting code [Formula: see text]. They proved that [Formula: see text] has a normal subgroup H, which is a semidirect product group of the centralizer Z(f) of f in GLm(2) with [Formula: see text], and the index [Formula: see text] is the number of elements of Ff = {f, 1 - f, 1/f, 1 - 1/f, 1/(1 - f), f/(1 - f)} that are conjugate to f. In this paper, a theorem to describe the relationship between the quotient group [Formula: see text] and the set Ff is presented, and a way to find the elements of Ff that are conjugate to f is proposed. Then we prove that [Formula: see text] is isomorphic to S3 and H is a semidirect product group of [Formula: see text] with [Formula: see text] in the linear case. Finally, we generalize a result due to Calderbank et al.


2015 ◽  
Vol 13 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Luobin Guo ◽  
Qiang Fu ◽  
Ruihu Li ◽  
Liangdong Lu

Entanglement-assisted quantum error correcting code (EAQECC) is a generalization of standard stabilizer quantum code. Maximal entanglement EAQECCs can achieve the EA-hashing bound asymptotically. In this work, we give elementary recursive constructions of quaternary zero radical codes with dual distance three for all n ≥ 4. Consequently, good maximal entanglement EAQECCs of minimum distance three for such length n are obtained. Almost all of these EAQECCs are optimal or near optimal according to the EA-quantum Hamming bound.


Author(s):  
Shiroman Prakash

The ternary Golay code—one of the first and most beautiful classical error-correcting codes discovered—naturally gives rise to an 11-qutrit quantum error correcting code. We apply this code to magic state distillation, a leading approach to fault-tolerant quantum computing. We find that the 11-qutrit Golay code can distil the ‘most magic’ qutrit state—an eigenstate of the qutrit Fourier transform known as the strange state —with cubic error suppression and a remarkably high threshold. It also distils the ‘second-most magic’ qutrit state, the Norell state, with quadratic error suppression and an equally high threshold to depolarizing noise.


2021 ◽  
Author(s):  
Ming Gong ◽  
Xiao Yuan ◽  
Shiyu Wang ◽  
Yulin Wu ◽  
Youwei Zhao ◽  
...  

Abstract Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state, and state decoding. To address this challenge, we experimentally realise the [[5, 1, 3]] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the [[5, 1, 3]] code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of $57.1(3)\%$ while with a high fidelity of $98.6(1)\%$ in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilizers. We further implement logical Pauli operations with a fidelity of $97.2(2)\%$ within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of $74.5(6)\%$, in total with 92 gates. Our work demonstrates each key aspect of the [[5, 1, 3]] code and verifies the viability of experimental realization of quantum error correcting codes with superconducting qubits.


2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Grant Elliot

Abstract: It was shown by [2] how bulk operators in the AdS/CFT correspondence can be represented on the boundary analogously to the way logical qubits are represented in an encoded subspace in quantum error correction. Then in [1]  holographic tensor networks that serve as toy models of the bulk boundary. This paper reviews some of the developments of [1] and [2]. Then it is demonstrated explicitly how to construct perfect tensors, which are essential to the tensor networks mentioned in [2]. Lastly a new example of a holographic quantum error-correcting code based on an eight index perfect tensor is presented.


2005 ◽  
Vol 03 (02) ◽  
pp. 371-393 ◽  
Author(s):  
P. J. SALAS ◽  
A. L. SANZ

The states needed in quantum computation are extremely affected by decoherence. Several methods have been proposed to control error spreading. They use two main tools: fault-tolerant constructions and concatenated quantum error correcting codes. In this work, we estimate the threshold conditions necessary to make a long enough quantum computation. The [[7,1,3]] CSS quantum code together with the Shor method to measure the error syndrome is used. No concatenation is included. The decoherence is introduced by means of the depolarizing channel error model, obtaining several thresholds from the numerical simulation. Regarding the maintenance of a qubit stabilized in the memory, the error probability must be smaller than 2.9 × 10-5. In order to implement a one or two-qubit encoded gate in an effective fault-tolerant way, it is possible to choose an adequate non-encoded noisy gate if the memory error probability is smaller than 1.3 × 10-5. In addition, fulfilling this last condition permits us to assume a more efficient behavior compared to the equivalent non-encoded process.


2014 ◽  
Vol 12 (01) ◽  
pp. 1430001 ◽  
Author(s):  
Martin Leslie

We introduce a new type of sparse CSS quantum error correcting code based on the homology of hypermaps. Sparse quantum error correcting codes are of interest in the building of quantum computers due to their ease of implementation and the possibility of developing fast decoders for them. Codes based on the homology of embeddings of graphs, such as Kitaev's toric code, have been discussed widely in the literature and our class of codes generalize these. We use embedded hypergraphs, which are a generalization of graphs that can have edges connected to more than two vertices. We develop theorems and examples of our hypermap-homology codes, especially in the case that we choose a special type of basis in our homology chain complex. In particular the most straightforward generalization of the m × m toric code to hypermap-homology codes gives us a [(3/2)m2, 2, m] code as compared to the toric code which is a [2m2, 2, m] code. Thus we can protect the same amount of quantum information, with the same error-correcting capability, using less physical qubits.


Sign in / Sign up

Export Citation Format

Share Document