Generalized edge-colorings of weighted graphs

2016 ◽  
Vol 08 (01) ◽  
pp. 1650015
Author(s):  
Yuji Obata ◽  
Takao Nishizeki

Let [Formula: see text] be a graph with a positive integer weight [Formula: see text] for each vertex [Formula: see text]. One wishes to assign each edge [Formula: see text] of [Formula: see text] a positive integer [Formula: see text] as a color so that [Formula: see text] for any vertex [Formula: see text] and any two edges [Formula: see text] and [Formula: see text] incident to [Formula: see text]. Such an assignment [Formula: see text] is called an [Formula: see text]-edge-coloring of [Formula: see text], and the maximum integer assigned to edges is called the span of [Formula: see text]. The [Formula: see text]-chromatic index of [Formula: see text] is the minimum span over all [Formula: see text]-edge-colorings of [Formula: see text]. In the paper, we present various upper and lower bounds on the [Formula: see text]-chromatic index, and obtain three efficient algorithms to find an [Formula: see text]-edge-coloring of a given graph. One of them finds an [Formula: see text]-edge-coloring with span smaller than twice the [Formula: see text]-chromatic index.

10.37236/1525 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

For a graph $G$ whose degree sequence is $d_{1},\ldots ,d_{n}$, and for a positive integer $p$, let $e_{p}(G)=\sum_{i=1}^{n}d_{i}^{p}$. For a fixed graph $H$, let $t_{p}(n,H)$ denote the maximum value of $e_{p}(G)$ taken over all graphs with $n$ vertices that do not contain $H$ as a subgraph. Clearly, $t_{1}(n,H)$ is twice the Turán number of $H$. In this paper we consider the case $p>1$. For some graphs $H$ we obtain exact results, for some others we can obtain asymptotically tight upper and lower bounds, and many interesting cases remain open.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


Author(s):  
George Giordano

Letd(k)be defined as the least positive integernfor whichpn+1<2pn−k. In this paper we will show that fork≥286664, thend(k)<k/(logk−2.531)and fork≥2, thenk(1−1/logk)/logk<d(k). Furthermore, forksufficiently large we establish upper and lower bounds ford(k).


2021 ◽  
pp. 2150041
Author(s):  
Hanxiao Qiao ◽  
Ke Wang ◽  
Suonan Renqian ◽  
Renqingcuo

For bipartite graphs [Formula: see text], the bipartite Ramsey number [Formula: see text] is the least positive integer [Formula: see text] so that any coloring of the edges of [Formula: see text] with [Formula: see text] colors will result in a copy of [Formula: see text] in the [Formula: see text]th color for some [Formula: see text]. In this paper, we get the exact value of [Formula: see text], and obtain the upper and lower bounds of [Formula: see text], where [Formula: see text] denotes a path with [Formula: see text] vertices.


1999 ◽  
Vol 60 (1) ◽  
pp. 21-35
Author(s):  
Tom C. Brown ◽  
Bruce M. Landman

A generalisation of the van der Waerden numbers w(k, r) is considered. For a function f: Z+ → R+ define w(f, k, r) to be the least positive integer (if it exists) such that for every r-coloring of [1, w(f, k, r)] there is a monochromatic arithmetic progression {a + id: 0 ≤ i ≤ k −1} such that d ≥ f(a). Upper and lower bounds are given for w(f, 3, 2). For k > 3 or r > 2, particular functions f are given such that w(f, k, r) does not exist. More results are obtained for the case in which f is a constant function.


Integers ◽  
2010 ◽  
Vol 10 (6) ◽  
Author(s):  
Hayri Ardal

AbstractThe well-known Brown's lemma says that for every finite coloring of the positive integers, there exist a fixed positive integer


Author(s):  
Ortrud R. Oellermann

AbstractAn induced subgraph H of connectivity (edge-connectivity) n in a graph G is a major n-connected (major n-edge-connected) subgraph of G if H contains no subgraph with connectivity (edge- connectivity) exceeding n and H has maximum order with respect to this property. An induced subgraph is a major (major edge-) subgraph if it is a major n-connected (major n-edge-connected) subgraph for some n. Let m be the maximum order among all major subgraphs of C. Then the major connectivity set K(G) of G is defined as the set of all n for which there exists a major n-connected subgraph of G having order m. The major edge-connectivity set is defined analogously. The connectivity and the elements of the major connectivity set of a graph are compared, as are the elements of the major connectivity set and the major edge-connectivity set of a graph. It is shown that every set S of nonnegative integers is the major connectivity set of some graph G. Further, it is shown that for each positive integer m exceeding every element of S, there exists a graph G such that every major k-connected subgraph of G, where k ∈ K(G), has order m. Moreover, upper and lower bounds on the order of such graphs G are established.


2013 ◽  
Vol 94 (1) ◽  
pp. 50-105 ◽  
Author(s):  
CHRISTIAN ELSHOLTZ ◽  
TERENCE TAO

AbstractFor any positive integer $n$, let $f(n)$ denote the number of solutions to the Diophantine equation $$\begin{eqnarray*}\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\end{eqnarray*}$$ with $x, y, z$ positive integers. The Erdős–Straus conjecture asserts that $f(n)\gt 0$ for every $n\geq 2$. In this paper we obtain a number of upper and lower bounds for $f(n)$ or $f(p)$ for typical values of natural numbers $n$ and primes $p$. For instance, we establish that $$\begin{eqnarray*}N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\ll \displaystyle \sum _{p\leq N}f(p)\ll N\hspace{0.167em} {\mathop{\log }\nolimits }^{2} N\log \log N.\end{eqnarray*}$$ These upper and lower bounds show that a typical prime has a small number of solutions to the Erdős–Straus Diophantine equation; small, when compared with other additive problems, like Waring’s problem.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2091-2099
Author(s):  
Shuya Chiba ◽  
Yuji Nakano

In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching of G, which is denoted by ms(G). In this paper, we show that every graph G of size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by using the edge-coloring of G, and we also improve this lower bound for some particular graphs. We further discuss the relationship between the matching sequencibility and a conjecture of Seymour about the existence of the kth power of a Hamilton cycle.


Author(s):  
ZHANG Fu Gang

Abstract In this paper, we discuss quantum uncertainty relations of Tsallis relative $\alpha$ entropy coherence for a single qubit system based on three mutually unbiased bases. For $\alpha\in[\frac{1}{2},1)\cup(1,2]$, the upper and lower bounds of sums of coherence are obtained. However, the above results cannot be verified directly for any $\alpha\in(0,\frac{1}{2})$. Hence, we only consider the special case of $\alpha=\frac{1}{n+1}$, where $n$ is a positive integer, and we obtain the upper and lower bounds. By comparing the upper and lower bounds, we find that the upper bound is equal to the lower bound for the special $\alpha=\frac{1}{2}$, and the differences between the upper and the lower bounds will increase as $\alpha$ increases. Furthermore, we discuss the tendency of the sum of coherence, and find that it has the same tendency with respect to the different $\theta$ or $\varphi$, which is opposite to the uncertainty relations based on the R\'{e}nyi entropy and Tsallis entropy.


Sign in / Sign up

Export Citation Format

Share Document