Highly Mesoporous Silica Nanoparticles for Potential Drug Delivery Applications

Nano LIFE ◽  
2014 ◽  
Vol 04 (03) ◽  
pp. 1441003 ◽  
Author(s):  
Timur Sh. Atabaev ◽  
Gulnoza Urmanova ◽  
Nguyen Hoa Hong

There is an increasing interest in the use of silica nanoparticles (NPs) for bioapplications. Highly mesoporous fluorescein dye-doped silica NPs that can carry a drug payload have been successfully synthesized through a facile microemulsion process. The morphology of the as-prepared silica NPs were characterized by scanning electron microscope and transmission electron microscope, whereas their optical properties were studied by photoluminescence spectroscopy. The results revealed that these silica NPs exhibit excellent properties, including large pore volume, a narrow size distribution and strong fluorescent properties. The synthesized silica NPs showed a good biocompatibility and a low cytotoxicity when incubated in a murine fibroblast L-929 cell line. The obtained silica NPs were further used as drug delivery carriers to investigate the in vitro drug release properties using doxorubicin (DOX) as a representative drug model. It was shown that synthesized silica NPs well sustained drug release properties, suggesting their potential applications for drug delivery.

2020 ◽  
Vol 11 (4) ◽  
pp. 11905-11919

Despite the recent advances and development of conventional cancer therapy strategies, treatments often lack specificity, resulting in low therapeutic efficiency, cancer recurrence, and drug resistance. With the advent of nanotechnology, nanoparticle-based delivery systems have steadily gained interest. The key to using any drug delivery system is its’ relative cytotoxicity, pharmacokinetics, and downstream immunological effects that may arise upon repetitive exposure. Among the nanoparticle systems, mesoporous silica nanoparticles (MSNs) have received favorable attention as potential drug delivery platforms. This study aimed to synthesize and functionalized MSNs with chitosan and polyethyleneglycol for improved stability, efficient drug loading, and drug release. These polymerized MSNs were physicochemically and morphologically characterized and assessed for their dual-drug [doxorubicin (DOX)/5-fluoruracil (5-FU)] loading, drug release kinetics, and anticancer activity in vitro. MSNs ranged from 35-70 nm in size, with a high surface area (809.44 m²/g) and a large pore volume (1.74 cm²/g). The DOX/5-FU co-loading produced a potent dual-drug formulation with good pH-responsive release profiles, high percentage release, especially from PEGylated MSNs, and significant anticancer activity the breast adenocarcinoma (MCF-7) and cervical cancer (HeLa) cells. This combination therapy's favorable outcomes suggest an improved therapeutic strategy that warrants investigation in an in vivo model.


Author(s):  
Kumar Nishchaya ◽  
Swatantra K.S. Kushwaha ◽  
Awani Kumar Rai

Background: Present malignant cancer medicines has the advancement of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue. Aim: In the present investigation, a silica nanoparticles (MSNs) stacked with hydroxyurea were combined and was optimized for dependent and independent variables. Method: In this study, microporous silica nanoparticle stacked with neoplastic medication had been prepared through emulsification followed with solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratio of polymer, lipid and surfactant which affects drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, stability testing in order to investigate the nanoparticle characteristics. Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3, was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours. Conclusion: From the stability studies data it can be culminated that formulations are most stable when stored at lower temperature or in refrigerator i.e. 5˚C ± 3˚C. It can be concluded that MSN’s loaded with hydroxyurea is a promising approach towards the management of cancer due to its sustained release and less side effects.


Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18031-18036 ◽  
Author(s):  
Giuseppe Ferrauto ◽  
Fabio Carniato ◽  
Enza Di Gregorio ◽  
Mauro Botta ◽  
Lorenzo Tei

A nanosystem based on mesoporous silica functionalized with ICG and the chemotherapeutic drug mitoxantrone has been exploited to introduce an innovative photoacoustic ratiometric approach for the assessment of drug release both in vitro and in vivo.


2017 ◽  
Vol 53 (62) ◽  
pp. 8755-8758 ◽  
Author(s):  
Song Wang ◽  
Fei Liu ◽  
Xiang-Ling Li

We constructed a versatile drug delivery system using dual internal stimulus, achieving controllable release and monitoring simultaneously.


Nanoscale ◽  
2015 ◽  
Vol 7 (14) ◽  
pp. 6304-6310 ◽  
Author(s):  
Yuxia Tang ◽  
Hao Hu ◽  
Molly Gu Zhang ◽  
Jibin Song ◽  
Liming Nie ◽  
...  

A photoresponsive drug delivery system was developed for light-mediated drug release and aptamer-targeted cancer therapy.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


Sign in / Sign up

Export Citation Format

Share Document