Review of Thermal Performance and Efficiency in Evacuated Tube Solar Collector with Various Nanofluids

2017 ◽  
Vol 25 (02) ◽  
pp. 1730001 ◽  
Author(s):  
Hyeongmin Kim ◽  
Jinhyun Kim ◽  
Honghyun Cho

With the development of nanotechnology, building a new technology area in a variety of fields and achieving the best performance has become possible. Several studies on the performance of a solar heating system have been conducted using various nanofluids because the efficiency of heat transfer of nanofluids is high. Various previous studies, including theoretical, numerical, and experimental methods, were conducted using nanofluids for flat-plate, evacuated tube, direct solar absorption, parabolic trough, and heat pipe solar collectors. The present work provides an overview of the recent research on the performance of evacuated tube solar collectors using various nanofluids. The experimental and numerical results reported by several researchers, such as the thermal conductivity, heat capacity, and heat transfer coefficient of nanofluids, are first reported. The studies on the evacuated tube solar collectors with nanofluids were then investigated and summarized.

Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3198 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

Solar absorption cycles for air conditioning systems have recently attracted much attention. They have some important advantages that aid in reducing greenhouse gas emissions. In this work, design and thermo-economic analyses are presented in order to compare between two different collector types (parabolic trough and evacuated tube) by water–lithium bromide absorption systems, and to select the best operating conditions. Generally, the system consists of three major parts. The first part is the solar field for thermal power conversion. The second part is the intermediate cycle, which contains a flashing tank and pumping system. The third part is the water lithium bromide absorption chiller. A case study for a sports arena with 700–800 kW total cooling load is also presented. Results reveal that a parabolic trough collector combined with H2O–LiBr (PTC/H2O–LiBr) gives lower design aspects and minimum rates of hourly costs (USD 5.2/h), while ETC/H2O–LiBr configuration give USD 5.6/h. The H2O–LiBr thermo-economic product cost is USD 0.14/GJ. The cycle coefficient of performance COP was in the range of 0.5 to 0.9.


Author(s):  
Tugba S. Sensoy ◽  
Sam Yang ◽  
Juan C. Ordonez

In this paper we present a dynamic three-dimensional volume element model (VEM) of a parabolic trough solar collector (PTC) comprising an outer glass cover, annular space, absorber tube, and heat transfer fluid. The spatial domain in the VEM is discretized with lumped control volumes (i.e., volume elements) in cylindrical coordinates according to the predefined collector geometry; therefore, the spatial dependency of the model is taken into account without the need to solve partial differential equations. The proposed model combines principles of thermodynamics and heat transfer, along with empirical heat transfer correlations, to simplify the modeling and expedite the computations. The resulting system of ordinary differential equations is integrated in time, yielding temperature fields which can be visualized and assessed with scientific visualization tools. In addition to the mathematical formulation, we present the model validation using the experimental data provided in the literature, and conduct two simple case studies to investigate the collector performance as a function of annulus pressure for different gases as well as its dynamic behavior throughout a sunny day. The proposed model also exhibits computational advantages over conventional PTC models-the model has been written in Fortran with parallel computing capabilities. In summary, we elaborate the unique features of the proposed model coupled with enhanced computational characteristics, and demonstrate its suitability for future simulation and optimization of parabolic trough solar collectors.


2021 ◽  
Author(s):  
S. Mojtaba Tabarhoseini ◽  
M. Sheikholeslami

Abstract In the current investigation, the thermal and thermodynamic behavior of a buoyancy-driven evacuated tube solar collector has undergone precise evaluation, and the efficacy of nanoparticle dispersion in the base fluid has been scrutinized using computational fluid dynamics based on the finite volume method. The natural convection process was analyzed in different vertical sections of the absorber tube. The temperature and velocity distributions of water as the conventional working fluid and the nanofluid were compared at various cutting planes along the tube during the simulation time. In this problem, CuO nanoparticles with optimum thermal properties were suspended in the base fluid. According to the surveyed results, the temperature distribution analysis illustrates that the mean temperature of the tank experiences more enhancement when the nanofluid is used. The comparison of the heat transfer coefficient between two simulated cases shows the competency of utilizing CuO/water nanofluid in the thermal performance improvement of the collector. The results related to entropy generation assessment show that the irreversibility owing to fluid friction rises when the nanofluid is applied during the flow time. In contrast, the entropy generation of pure water owing to heat transfer surpasses the case with nanofluid.


2020 ◽  
Vol 150 ◽  
pp. 01009
Author(s):  
J. Dardouch ◽  
M. Charia ◽  
A. Bernatchou

In this paper, we present a numerical study of a single-stage absorption refrigeration machine, operating with a couple of water-ammonia fluids, equipped with a distillation column and associated with a solar heating system using solar collectors. The study has showed the benefit of using the distillation column which is manifested by: The decrease of the operating temperature, The improvement of the coefficient of performance, Surface reduction of the solar collectors, The improvement of the solar coefficient of performance. The solar study shows that the absorption refrigeration machine equipped with a distillation column is better suited to solar energy with significantly better performance compared to the simple absorption refrigeration machine.


Sign in / Sign up

Export Citation Format

Share Document