The Dirac-Milne cosmology

2014 ◽  
Vol 30 ◽  
pp. 1460272 ◽  
Author(s):  
Aurélien Benoit-Lévy ◽  
Gabriel Chardin

We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

2015 ◽  
Vol 24 (08) ◽  
pp. 1550059 ◽  
Author(s):  
Jian-bin Chen ◽  
Zhen-qi Liu ◽  
Lili Xing

We investigate the cosmological constraints on the variable modified Chaplygin gas (VMCG) model from the latest observational data: Union2 dataset of Type Ia supernovae (SNIa), the observational Hubble data (OHD), the baryon acoustic oscillations (BAO) and the cosmic microwave background (CMB) data. By using the Markov chain Monte Carlo (MCMC) method, we obtain the mean values of parameters in the flat model: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. Furthermore, we investigate the thermodynamical properties of VMCG model at apparent horizon, event horizon and particle horizon respectively.


2011 ◽  
Vol 26 (12) ◽  
pp. 893-900 ◽  
Author(s):  
ROBERT K. NESBET

Requiring all massless elementary fields to have conformal scaling symmetry removes the conflict between gravitational theory and the quantum theory of elementary particles and fields. Extending this postulate to the scalar field of the Higgs model, dynamical breaking of both gauge and conformal symmetries determines parameters for the interacting fields. In uniform isotropic geometry a modified Friedmann cosmic evolution equation is derived with nonvanishing cosmological constant. Parameters determined by numerical solution are consistent with empirical data for redshifts z ≤ z* = 1090, including luminosity distances for observed type Ia supernovae and peak structure ratios in the cosmic microwave background (CMB). The theory does not require dark matter.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Deng Wang

AbstractTo investigate whether f(R) gravity can relieve current $$H_0$$ H 0 and $$\sigma _8$$ σ 8 tensions, we constrain the Hu-Sawicki f(R) gravity with Planck-2018 cosmic microwave background and redshift space distortions observations. We find that this model fails to relieve both $$H_0$$ H 0 and $$\sigma _8$$ σ 8 tensions, and that its two typical parameters $$\log _{10}f_{R0}$$ log 10 f R 0 and n are insensitive to other cosmological parameters. Combining the cosmic microwave background, baryon acoustic oscillations, Type Ia supernovae, cosmic chronometers with redshift space distortions observations, we give our best constraint $$\log _{10}f_{R0}<-6.75$$ log 10 f R 0 < - 6.75 at the $$2\sigma $$ 2 σ confidence level.


2011 ◽  
Vol 20 (01) ◽  
pp. 1-16 ◽  
Author(s):  
KOICHI HIRANO ◽  
ZEN KOMIYA

We study the observational constraints on the Phantom Crossing DGP model. We demonstrate that the crossing of the phantom divide does not occur within the framework of the original Dvali–Gabadadze–Porrati (DGP) model or the DGP model developed by Dvali and Turner. By extending their model in the framework of an extra dimension scenario, we study a model that realizes crossing of the phantom divide. We investigate the cosmological constraints obtained from the recent observational data of Type Ia supernovae, cosmic microwave background anisotropies, and baryon acoustic oscillations. The best-fit values of the parameters with 1σ (68%) errors for the Phantom Crossing DGP model are [Formula: see text]. We find that the Phantom Crossing DGP model is more compatible with the observations than the original DGP model or the DGP model developed by Dvali and Turner. Our model can realize late-time acceleration of the universe, similar to that of ΛCDM model, without dark energy due to the effect of DGP gravity. In our model, the crossing of the phantom divide occurs at a redshift of z ~ 0.2.


2009 ◽  
Vol 24 (17) ◽  
pp. 1355-1360 ◽  
Author(s):  
LIXIN XU ◽  
WENBO LI ◽  
JIANBO LU

In this paper, a holographic dark energy model, dubbed Ricci dark energy, is confronted with cosmological observational data from type Ia Supernovae (SN Ia), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB). By using maximum likelihood method, we found that Ricci dark energy model is a viable candidate of dark energy model with the best fit parameters: Ωm0 = 0.34 ± 0.04, α = 0.38 ± 0.03 with 1σ error. Here, α is a dimensionless parameter related to Ricci dark energy ρR and Ricci scalar R, i.e. ρR ∝ αR.


2011 ◽  
Vol 20 (06) ◽  
pp. 1153-1166 ◽  
Author(s):  
L. CAMPANELLI ◽  
P. CEA ◽  
G. L. FOGLI ◽  
L. TEDESCO

A cosmological model with anisotropic dark energy is analyzed. The amount of deviation from isotropy of the equation of state of dark energy, the skewness δ, generates an anisotropization of the large-scale geometry of the Universe, quantifiable by means of the actual shear Σ0. Requiring that the level of cosmic anisotropization at the time of decoupling be such that we can solve the "quadrupole problem" of cosmic microwave background radiation, we find that |δ| ~ 10-4 and |Σ_0| ~10-5, compatible with existing limits derived from the magnitude redshift data on Type Ia supernovae.


Sign in / Sign up

Export Citation Format

Share Document