Fractional Brownian modeled linear polymer chains with one dimensional Metropolis Monte Carlo simulation

2015 ◽  
Vol 36 ◽  
pp. 1560017
Author(s):  
J. P. B. Sambo ◽  
B. V. Gemao ◽  
J. B. Bornales

The scaling expression for fractional Brownian modeled linear polymer chains was obtained both theoretically and numerically. Through the probability distribution of fractional Brownian paths, the scaling was found out to be 〈R2〉 ~ N2H, where R is the end-to-end distance of the polymer chain, N is the number of monomer units and H is the Hurst parameter. Numerical data was generated through the use of Monte Carlo simulation implementing the Metropolis algorithm. Results show good agreement between numerical and theoretical scaling constants after some parameter optimization. The probability distribution confirmed the Gaussian nature of fractional Brownian motion and the behavior is not affected by varying values of the Hurst parameter and of the number of monomer units.

1978 ◽  
Vol 31 (4) ◽  
pp. 299 ◽  
Author(s):  
HA Blevin ◽  
J Fletcher ◽  
SR Hunter

Hunter (1977) found that a Monte-Carlo simulation of electron swarms in hydrogen, based on an isotropic scattering model, produced discrepancies between the predicted and measured electron transport parameters. The present paper shows that, with an anisotropic scattering model, good agreement is obtained between the predicted and experimental data. The simulation code is used here to calculate various parameters which are not directly measurable.


2020 ◽  
Vol 26 (3) ◽  
pp. 484-496
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Xianglong Wang ◽  
Raynald Gauvin

AbstractIn electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Sabine Beuermann ◽  
Michael Buback ◽  
Marco Drache ◽  
Dorit Nelke ◽  
Gudrun Schmidt-Naake

Abstract The differences in solubility of poly(vinyl acetate) (PVAc) and poly(methyl acrylate) (PMA) were addressed by applying atomistic Monte Carlo simulation techniques. Polymer segments consisting of nine monomer units serve as model compounds for polymer chains. As a measure of intermolecular interactions with the solvent environment, cohesion energies of the polymer segments embedded in either the corresponding monomer or in CO2 were calculated. Only in case of PMA segments in CO2 environment, specific interactions between polymer segments were identified. This finding is in agreement with experimental results on phase behaviour and propagation kinetics.


Sign in / Sign up

Export Citation Format

Share Document