scholarly journals Jets in Heavy Ion Collisions with the ATLAS Detector

2018 ◽  
Vol 46 ◽  
pp. 1860020
Author(s):  
Helena Santos

Jets constitute a golden probe to study the quark gluon plasma produced in heavy ion collisions at the LHC. Being produced at the early stages of the collisions, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb collisions with respect to [Formula: see text] collisions. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. These proceedings describe results on these observables from ATLAS in Runs 1 and 2. The high statistical significance of these data samples collected by ATLAS allows precision measurements of these observables in a wide range of transverse momentum and centrality.

2007 ◽  
Vol 16 (07n08) ◽  
pp. 1930-1936 ◽  
Author(s):  
WEI LIU ◽  
CHE MING KO ◽  
BEN-WEI ZHANG

A gluon or quark jet traversing through a quark-gluon plasma can be converted into a quark or gluon jet through scatterings with thermal partons. Their conversion rates due to two-body elastic and inelastic scattering as well as scatterings involving gluon radiation are evaluated in the lowest order in Quantum Chromodynamics (QCD). Including both energy loss and conversions of quark and gluon jets in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we find a net conversion of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/π+ and [Formula: see text] ratios at high transverse momentum. Using the larger QCD coupling constant from lattice QCD calculations than that given by the perturbative QCD further enhances the net quark to gluon jet conversion rate, leading to a closer similarity between these ratios at high transverse momentum in central Au + Au collisions at [Formula: see text] and in p + p collisions at same energy as observed in experiments.


2002 ◽  
Vol 17 (30) ◽  
pp. 4615-4634 ◽  
Author(s):  
BHASKAR DE ◽  
S. BHATTACHARYYA ◽  
P. GUPTAROY

The present paper aims at testing a very simple approach to interpret the characteristics of inclusive production of pions in high energy NA and AA collisions by a somewhat in-depth analysis of the same for NN interactions; and also at reporting here thus some interesting observations made on the nature of rapidity and transverse momentum spectra of the produced pions. And this approach is built upon a newly offered master formula holding the key for converting the results of high energy nucleon–nucleon (NN) collision to the corresponding observables on differential and inclusive cross-sections for both nucleon–nucleus and nucleus–nucleus (heavy ion) collisions in a generalized form. The proposed formulae, used in a somewhat phenomenological way, can provide modestly reliable parametrization of data in the broad range of collision energy and the varied range of projectile-target combinations. This opens up the possibility of understanding in a quite unified manner the large amount of data on the rapidity and transverse momentum spectra in a wide range of interactions and energies starting right from ISR, rather Bevelac, to the relativistic heavy ion collisions (RHIC) via the various collider scales of energy. The agreements between the data and calculations, in most cases, are quite satisfactory both qualitatively and quantitatively. While highlighting this success, the limitation of the approach has also been pointed out in the end as clearly and categorically as possible.


2018 ◽  
Vol 172 ◽  
pp. 05006
Author(s):  
Ivan Vitev

In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi-Jin Jiang ◽  
Jia-Qi Hui ◽  
Yu Zhang

It is widely believed that the quark-gluon plasma (QGP) might be formed in the current heavy ion collisions. It is also widely recognized that the relativistic hydrodynamics is one of the best tools for describing the process of expansion and hadronization of QGP. In this paper, by taking into account the effects of thermalization, a hydrodynamic model including phase transition from QGP state to hadronic state is used to analyze the rapidity and transverse momentum distributions of identified charged particles produced in heavy ion collisions. A comparison is made between the theoretical results and experimental data. The theoretical model gives a good description of the corresponding measurements made in Au-Au collisions at RHIC energies.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Niseem Magdy ◽  
Sumit Basu ◽  
Victor Gonzalez ◽  
Ana Marin ◽  
Olga Evdokimov ◽  
...  

AbstractTwo-particle transverse momentum correlation functions are a powerful technique for understanding the dynamics of relativistic heavy-ion collisions. Among these, the transverse momentum correlator $$G_{2}\left( \varDelta \eta ,\varDelta \varphi \right) $$ G 2 Δ η , Δ φ is of particular interest for its potential sensitivity to the shear viscosity per unit of entropy density $$\eta /s$$ η / s of the quark-gluon plasma formed in heavy-ion collisions. We use the UrQMD, AMPT, and EPOS models for Au–Au at $$\sqrt{s_\mathrm{NN}}$$ s NN = 200 GeV and Pb–Pb at $$\sqrt{s_\mathrm{NN}}$$ s NN = 2760 GeV to investigate the long range azimuthal dependence of $$G_{2}\left( \varDelta \eta ,\varDelta \varphi \right) $$ G 2 Δ η , Δ φ , and explore its utility to constrain $$\eta /s$$ η / s based on charged particle correlations. We find that the three models yield quantitatively distinct transverse momentum Fourier harmonics coefficients $$a^{p_\mathrm{T}}_{n}$$ a n p T . We also observe these coefficients exhibit a significant dependence on $$\eta /s$$ η / s in the context of the AMPT model. These observations suggest that exhaustive measurements of the dependence of $$G_{2}\left( \varDelta \varphi \right) $$ G 2 Δ φ with collision energy, system size, collision centrality, in particular, offer the potential to distinguish between different theoretical models and their underlying assumptions. Exhaustive analyses of $$G_{2}\left( \varDelta \varphi \right) $$ G 2 Δ φ obtained in large and small systems should also be instrumental in establishing new constraints for precise extraction of $$\eta /s$$ η / s .


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Giuliano Giacalone ◽  
Fernando G. Gardim ◽  
Jacquelyn Noronha-Hostler ◽  
Jean-Yves Ollitrault

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
T. Niida ◽  
Y. Miake

AbstractThe progress over the 30 years since the first high-energy heavy-ion collisions at the BNL-AGS and CERN-SPS has been truly remarkable. Rigorous experimental and theoretical studies have revealed a new state of the matter in heavy-ion collisions, the quark-gluon plasma (QGP). Many signatures supporting the formation of the QGP have been reported. Among them are jet quenching, the non-viscous flow, direct photons, and Debye screening effects. In this article, selected signatures of the QGP observed at RHIC and the LHC are reviewed.


2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
S. K. Tiwari ◽  
C. P. Singh

The current status of various thermal and statistical descriptions of particle production in the ultrarelativistic heavy-ion collisions experiments is presented in detail. We discuss the formulation of various types of thermal models of a hot and dense hadron gas (HG) and the methods incorporated in the implementing of the interactions between hadrons. It includes our new excluded-volume model which is thermodynamically consistent. The results of the above models together with the experimental results for various ratios of the produced hadrons are compared. We derive some new universal conditions emerging at the chemical freeze-out of HG fireball showing independence with respect to the energy as well as the structure of the nuclei used in the collision. Further, we calculate various transport properties of HG such as the ratio of shear viscosity-to-entropy using our thermal model and compare with the results of other models. We also show the rapidity as well as transverse mass spectra of various hadrons in the thermal HG model in order to outline the presence of flow in the fluid formed in the collision. The purpose of this review article is to organize and summarize the experimental data obtained in various experiments with heavy-ion collisions and then to examine and analyze them using thermal models so that a firm conclusion regarding the formation of quark-gluon plasma (QGP) can be obtained.


Sign in / Sign up

Export Citation Format

Share Document