Alignment of carbon nanotubes under the influences of nematic liquid crystals and electric fields — an analytical study

Author(s):  
Setia Budi Sumandra ◽  
Bhisma Mahendra ◽  
Fahrudin Nugroho ◽  
Yusril Yusuf

Carbon nanotubes (CNTs) have benefits in various fields, they are disadvantageous due to their tendency to form aggregates and poorly controlled alignment of the CNT molecules (characterized by order parameters). These deficiencies can be overcome by dispersing the CNTs in nematic liquid crystal (LC) and placing the mixture under the influence of an electric field. In this study, Doi and Landau–de Gennes free energy density equations are used to analytically confirm that an electric field increases the order parameters of CNTs and LCs in a dispersion mixture. The anchoring strength of the nematic LC is also found to affect the order parameters of the CNTs and LC. Further, increasing the length-to-diameter ratio of the CNTs increases their alignment without affecting the LC alignment. These findings indicate that CNT molecular alignment can be controlled by adjusting the CNT length-to-diameter ratio, anchoring the LCs, and adjusting the electric field strength.

2016 ◽  
Vol 18 (48) ◽  
pp. 33310-33319 ◽  
Author(s):  
Winarto Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

Under an electric field, water prefers to fill CNTs over ethanol, and electrostatic interactions within the ordered structure of the water molecules determine the separation effects.


2014 ◽  
Vol 633-634 ◽  
pp. 234-237
Author(s):  
Min Zhang ◽  
Guo Fang Zhang ◽  
Yu Xi Jia

The mesoscale simulation of polymer blends, Polypropylene (PP) and Polyamide12 (PA12), was calculated by Mesoscopic Dynamic method (MesoDyn). The free energy density, the order parameters and the density profiles were got by the simulation. The evolvement of the phase status was analyzed based on the free energy density and the order parameters. Using density profiles, the kinetics of phase separation was examined and the phase separation behavior was observed. Results showed that mesoscale simulation can be used to determine phase separation of sparingly miscrible polymer blends.


2021 ◽  
Vol 118 (17) ◽  
pp. e2016262118
Author(s):  
Prabhat Tripathi ◽  
Abdelkrim Benabbas ◽  
Behzad Mehrafrooz ◽  
Hirohito Yamazaki ◽  
Aleksei Aksimentiev ◽  
...  

Many small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field–driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5-nm-diameter pore, we find that, in a threshold electric-field regime of ∼30 to 100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5- and 2.0-nm-diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens avenues for exploring protein folding structures, internal contacts, and electric-field–induced deformability.


2021 ◽  
Author(s):  
Prabhat Tripathi ◽  
Abdelkrim Benabbas ◽  
Behzad Mehrafrooz ◽  
Hirohito Yamazaki ◽  
Aleksei Aksimentiev ◽  
...  

AbstractMany small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5 nm diameter pore we find that, in a threshold electric field regime of ∼30-100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5 nm and 2.0 nm diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens new avenues for exploring protein folding structures, internal contacts, and electric field-induced deformability.Significance StatementCan localized electric fields drive the complete unfolding of a protein molecule? Protein unfolding prior to its translocation through a nanopore constriction is an important step in protein transport across biological membranes and also an important step in nanopore-based protein sequencing. We studied here the electric-field-driven translocation behavior of a model protein (cyt c) through nanopores of diameters ranging from 1.5 to 5.5 nm. These single molecule measurements show that electric fields at the nanopore constriction can select both partially and fully unfolded protein conformations. Zero-field free energy gaps between these conformations, found using a simple thermodynamic model, are in remarkable agreement with previously reported studies of cyt c unfolding energetics.


Author(s):  
Konstantinos Ritos ◽  
Matthew K. Borg ◽  
Nigel J. Mottram ◽  
Jason M. Reese

The properties of water confined inside nanotubes are of considerable scientific and technological interest. We use molecular dynamics to investigate the structure and average orientation of water flowing within a carbon nanotube. We find that water exhibits biaxial paranematic liquid crystal ordering both within the nanotube and close to its ends. This preferred molecular ordering is enhanced when an axial electric field is applied, affecting the water flow rate through the nanotube. A spatially patterned electric field can minimize nanotube entrance effects and significantly increase the flow rate.


2013 ◽  
Vol 743-744 ◽  
pp. 126-137 ◽  
Author(s):  
Jian Ping Yang ◽  
Jing Kuan Duan ◽  
Chang Xiu Fan ◽  
Pei De Han ◽  
Shuang Xi Shao ◽  
...  

In this investigation, the multi-walled carbon nanotubes (MWCNTs) were dispersed in an interpenetrating polymer networks (IPNs) based on acrylate and cycloaliphatic epoxy resin (CER). The influences of the external electric field on the MWCNTs dispersion and the microstructure of host matrix were evaluated by means of optical microscopy, scanning electric microscopy (SEM) and atomic force microscopy (AFM), respectively. The microscopy measurements showed that the distribution of the MWCNTs depended strongly on the properties of the applied electric field. Applying AC electric field to the liquid MWCNTs/thermoset systems during curing stage could redistribute the MWCNTs, which arranged them in chain-like structures and oriented fibrous inclusions parallel to the applied electric field. However, the similar phenomenon was not observed in DC electric field. From the observations of AFM measurement, it was found that the utilization of the external electric field resulted in the nanostructured twophase structures in the resulting MWCNTs/thermoset nanocomposites. These novel electric-field-induced morphology transformations were mainly attributed to the curing process under the applied electric fields. The relationships between the microstructures and various physical properties of nanocomposites were also presented in this paper. The resulting nanocomposites displayed the interesting dielectric properties and the thermal stability properties, which significantly depended on their special microstructures of inclusions and the host matrix.


Nanoscale ◽  
2015 ◽  
Vol 7 (29) ◽  
pp. 12659-12665 ◽  
Author(s):  
Winarto Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

With an electric field, water prefers filling CNTs over methanol. Formation of an ordered structure plays an important role for a separation effect.


2016 ◽  
Vol 842 ◽  
pp. 453-456 ◽  
Author(s):  
Winarto ◽  
Daisuke Takaiwa ◽  
Eiji Yamamoto ◽  
Kenji Yasuoka

Water confined in carbon nanotubes (CNTs) under the influence of an electric field has interesting properties that are potential for nanofluidic-based applications. With molecular dynamics simulations, this work shows that the electric field induces formation of ordered structures of water molecules in the CNTs. Formation of the ordered structures strengthens the electrostatic interaction between the water molecules. As a result, water strongly prefers to fill CNTs over methanol and it produces a separation effect. Interestingly, the separation effect with the electric field does not decrease for a wide range of CNT diameter.


2005 ◽  
Vol 901 ◽  
Author(s):  
Xugang Xiong ◽  
Prashanth Makaram ◽  
Kaveh Bakhtari ◽  
Sivasubramanian Somu ◽  
Ahmed Busnaina ◽  
...  

AbstractDirected assembly of nanoparticles and single wall carbon nanotubes (SWNTs) using electrostatically addressable templates has been demonstrated. Nanoparticles down to 50 nm are assembled on the Au micro and nanowires of the templates in a DC and AC electric fields. The nanoparticles can be assembled in monolayers and thicker layers. Single wall carbon nanotubes (SWNTs) are also assembled without alignment on Au wires using the nanotemplate. As the size of the template wires is reduced to nanoscale dimensions, an AC electric field proves to be more effective for nanoparticle assembly than a DC electric field.


Author(s):  
A. I. Oliva-Avilés ◽  
F. Avilés ◽  
V. V. Zozulya

A theoretical investigation of the dynamic response of a pair of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under the presence of an alternating current (AC) electric field is presented. The proposed modeling strategy is based on the dielectrophoretic (DEP) theory and classical electrodynamics, and considers the effect of an applied AC electric field on the rotational and translation motion of interacting CNTs represented as electrical dipoles. The mutual interaction between a pair of adjacent CNTs stems from the presence of DEP-induced charges on the CNTs and, as such, contributes to the rotational and translational dynamics of the system. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs motion are investigated for different initial configurations. Based on the obtained results, it is here predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of CNTs immersed in solvents of high polarity promote faster rotational and translational motion and therefore faster equilibrium conditions (CNT tip-to-tip contact and horizontal alignment). The results incorporate important knowledge towards a better understanding of the complex mechanisms involved in the efforts of tailoring CNT networks by electric fields.


Sign in / Sign up

Export Citation Format

Share Document