Distributed Filtering-Based Autonomous Navigation System of UAV

2015 ◽  
Vol 03 (01) ◽  
pp. 17-34 ◽  
Author(s):  
Long Zhao ◽  
Ding Wang ◽  
Baoqi Huang ◽  
Lihua Xie

In this paper, we propose a systematic framework for the autonomous navigation system based on distributed filtering for an Unmanned Aerial Vehicle (UAV). The proposed framework consists of the design and algorithm of the autonomous navigation. Therein, the camera mounted on the UAV functions as a navigation sensor targeted for navigation and positioning. In order to reduce the computational complexity and exclude the risk caused by Global Positioning System (GPS) outage, an autonomous navigation system based on distributed filtering is designed and realized. When GPS is available by monitoring the GPS integrity, sensor information from Strapdown Inertial Navigation System (SINS) and GPS is fused using a 7-state Conventional Kalman Filter (CKF) to estimate the full UAV state (position, velocity and attitude); when GPS is unavailable, sensor information from gyroscopes, accelerometers and magnetometer is fused using a 4-state Extended Kalman Filter (EKF) to estimate the attitude and heading of the UAV, and sensor information from SINS and vision positioning system is fused using a 7-state Incoordinate Interval Kalman Filter (IIKF) to estimate the position and velocity of the UAV. In addition, the second-order vertical channel damping loop is adopted to fuse measurements from a barometer with those of SINS, which suppresses the divergence of the vertical channel error and makes the altitude information calculated by SINS trustable. Both ground and flight experiments of the autonomous navigation system have been carried out. The test results show that the system can provide stabilized attitude information in long durations, and can realize the automatic flight control of UAV.

2019 ◽  
Vol 41 (13) ◽  
pp. 3679-3687
Author(s):  
Xiaoyu Guo ◽  
Jian Yang ◽  
Tao Du ◽  
Wanquan Liu

One of the most significant challenges for an unmanned aerial vehicle (UAV) is to autonomously navigate in complex environments, as the signals from the global positioning system (GPS) are subject to disturbance and interference. To improve the autonomy and availability of the UAV navigation system without GPS, we design a new autonomous navigation system and implement it for real applications in this paper, in which one integrates the inertial measurement unit (IMU), the bionic polarization sensor (BPS), and the air data system (ADS). The BPS can provide effective heading angle measurement, and the ADS is used to output information for continuous velocity and height. The combination of BPS and ADS is a solution the inertial error drift. Kalman filter is selected to estimate the error state of the integrated navigation system based on the measurements from the BPS and ADS, and then the estimation is used to correct the navigation system error in real time. The simulation and experimental results have shown that the new integrated navigation system can perform with high precision and autonomy without GPS signal.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4345
Author(s):  
Jae-Hoon Jeong ◽  
Kiwon Park

Topics concerning autonomous navigation, especially those related to positioning systems, have recently attracted increased research attention. The commonly available global positioning system (GPS) is unable to determine the positions of vehicles in GPS-shaded regions. To address this concern, this paper presents a fuzzy-logic system capable of determining the position of a moving robot in a GPS-shaded indoor environment by analyzing the chromaticity and frequency-component ratio of LED lights installed under the ceiling. The proposed system’s performance was analyzed by performing a MATLAB simulation of an indoor environment with obstacles. During the simulation, the mobile robot utilized a fuzzy autonomous navigation system with behavioral rules to approach targets successfully in a variety of indoor environments without colliding with obstacles. The robot utilized the x and y coordinates of the fuzzy positioning system. The results obtained in this study confirm the suitability of the proposed method for use in applications involving autonomous navigation of vehicles in areas with poor GPS-signal reception, such as in tunnels.


2013 ◽  
Vol 411-414 ◽  
pp. 931-935
Author(s):  
She Sheng Gao ◽  
Wen Hui Wei ◽  
Li Xue

This paper analyzes the defects of satellite navigation systems that exist in positioning and precision-guided weapons and pointes out the advantages and military needs of pseudolite. The autonomous navigation nonlinear mathematical model of Near Space Pseudolite SINS/CNS/SAR autonomous navigation system is established. Based on the merits of fading filter, robust adaptive filtering and particle filter, we propose a fading adaptive Unscented Particle Filtering algorithm. The proposed filtering algorithm is applied to SINS/CNS/SAR autonomous navigation system and conducted simulation calculation with the Unscented Kalman filter and particle filter comparison. The results show that the new algorithm that is proposed meets the needs of pseudolite autonomous navigation, and the navigation accuracy is significantly higher than the Unscented Kalman filter and particle filter algorithm.


Sign in / Sign up

Export Citation Format

Share Document