scholarly journals A Survey of Single and Multi-UAV Aerial Manipulation

2020 ◽  
Vol 08 (02) ◽  
pp. 119-147 ◽  
Author(s):  
Abdullah Mohiuddin ◽  
Taha Tarek ◽  
Yahya Zweiri ◽  
Dongming Gan

Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed.

Author(s):  
Jameson Y. Lee ◽  
Zachary Cook ◽  
Alexander Barzilov ◽  
Woosoon Yim

Multirotor Unmanned Aerial Systems (UAS) are highly mobile in flight and possess stable hovering capabilities. Because of their unique flight characteristics, the utilization of the platform for active tasks such as aerial manipulation is highly attractive. Much work has been done in recent years towards the implementation of multirotor for aerial manipulation, however, progress in the field has been slow due to the many challenges involved in the implementation of robust rotor control. In an attempt to reduce the effects of the manipulator, a technique for disturbance rejection using a novel balancing mechanism is proposed. In this paper, the dynamic equations of a coupled multirotor and manipulator are analyzed as a single body for use in the attitude control of the platform. By mounting the mechanism, the platform effectively gains marginal control over the positioning of its center of gravity relative to a body fixed frame. It can be shown that the increased mobility can be utilized to reduce rotor saturation for any given flight condition and improve the effectiveness of previously developed rotor control methods.


Author(s):  
ELIAS ELIOT ◽  
B.B.V.L. DEEPAK ◽  
D.R. PARHI ◽  
J. SRINIVAS

This paper describes the design, fabrication and analysis a five axes articulated robotic manipulator. The current work is undertaken by considering various commercially available robotic kits to design and fabricate a five degree of freedom (D.O.F) arm. Forward kinematic model has been presented in order to determine the end effectors position and orientation. Although this work is still in primary level, this analysis is useful for path tracking of an industrial manipulator with pick-and-place application. Based on this analysis, a researcher can develop path tracking behaviour of an end effector in complicated work space.


Author(s):  
Bin Wei

Abstract The objective of this paper is to design and model a translational robotic arm that is simple and cheap to manufacture while maintaining good functionality. Once the robotic arm is designed, the control analysis and computer simulation are conducted. When selecting the material used for the parts, the density and strength of are considered. This paper covers the design process, analysis and computer simulation of a robotic arm. The final design is a 4-DOF (degrees of freedom) pick and place robot. This robot has 1 prismatic joint and 3 revolute joints. The arm is designed to be used in multiple applications such as pick and place, car wash, chalkboard erasers, etc. Forward kinematics is used to calculate the end effectors position and orientation based on the positions of each joint. The Lagrange general method is used to come up with the equation of motion. Also, the control method selected for this robot was nonlinear decoupling PD control.


Author(s):  
Emmanuel I. Agba ◽  
Tin-Lup Wong ◽  
Ming Z. Huang ◽  
Andrew M. Clark

Abstract In this paper, we describe how manipulator arms with end-effectors and payloads, if any, can be modeled using superellipsoids. Superellipsoids are very flexible convex solids. They are easy to manipulate by mathematical transformations and also possess a well defined inside-outside function, which to a great extent facilitates simulation of object interactions. A systematic way of determining transformation matrices between manipulator links, which are described as superquadric links, is presented. We also present how object detection and collision avoidance can be achieved. This technique has been implemented in a hybrid telerobotic simulator for undersea operations. It has also proved to be efficient for simulation of pick-and-place operations.


2015 ◽  
Vol 2015 (0) ◽  
pp. _2P1-W07_1-_2P1-W07_2
Author(s):  
Miyako TACHIBANA ◽  
Soichiro YAMATE ◽  
Akihiro KAWAMURA ◽  
Sadao KAWAMURA

Author(s):  
Yang Lyu ◽  
Quan Pan ◽  
Yizhai Zhang ◽  
Chunhui Zhao ◽  
Haifeng Zhu ◽  
...  

2013 ◽  
Vol 373-375 ◽  
pp. 217-220
Author(s):  
Yacine Benbelkacem ◽  
Rosmiwati Mohd-Mokhtar

Rate of convergence to the desired pose to grasp an object using visual information may be important in some applications, such as a pick and place routine in assembly where the time between two stops of the conveyor is very short. The visually guided robot is required to move fast if vision is to bring the sought benefits to industrial setups. In this paper, the three most famous techniques to visual servoing, mainly the image-based, position-based and hybrid visual servoing are evaluated in terms of their speed of convergence to the grasping pose in a pick and place task of a momentarily motionless target. An alternative open-loop near-minimum time approach is also presented and tested on a 5DOF under-actuated robotic arm. The performance is compared and result shows significant reduction for its time of convergence, to the aforementioned techniques.


2021 ◽  
Vol 33 (2) ◽  
pp. 196-204
Author(s):  
Robert Ladig ◽  
◽  
Hannibal Paul ◽  
Ryo Miyazaki ◽  
Kazuhiro Shimonomura

Aerial manipulation: physical interaction with the environment by using a robotic manipulator attached to the airframe of an aerial robot. In the future one can expect that aerial manipulation will greatly extend the range of possible applications for mobile robotics, especially multirotor UAVs. This can range from inspection and maintenance of previously hard to reach pieces of infrastructure, to search and rescue applications. What kind of manipulator is attached to what position of the airframe is a key point in accomplishing the aerial robot’s function and in the past, various aerial manipulation solutions have been proposed. This review paper gives an overview of the literature on aerial manipulation that have been proposed so far and classifies them by configuration of the workspace and function.


Sign in / Sign up

Export Citation Format

Share Document