Analysis of the Image Formation Mechanism on High Energy Scanning Electron Microscopy

1998 ◽  
Vol 37 (Part 1, No. 12B) ◽  
pp. 7024-7027 ◽  
Author(s):  
Masatoshi Kotera ◽  
Kiyoshi Yamaguchi
2011 ◽  
Vol 691 ◽  
pp. 32-36
Author(s):  
José G. Miranda-Hernández ◽  
Elizabeth Refugio-García ◽  
Eduardo Térres-Rojas ◽  
Enrique Rocha-Rangel

The effect of different titanium additions (0.5, 1, 2, 3 and 10 vol. %), milling intensity (4 and 8 h) and sintered temperature (1500 and 1600 °C) on microstructure and fracture toughness of Al2O3-based composites was analyzed in this study. After high energy milling of a titanium and Al2O3mixtures, powder mixture presents fine distribution and good homogenization between ceramic and metal. After milling powders during 8 h they were obtained very fine particles with 200 nm average sizes. Microstructures of the sintered bodies were analyzed with a scanning electron microscopy, where it was observed that the microstructure presents the formation of a small and fine metallic net inside the ceramic matrix. From fracture toughness measurements realized by the fracture indentation method, it had that when titanium content in the composite increases, fracture toughness is enhanced until 83% with respect to the fracture toughness of pure Al2O3. This behavior is due to the formation of metallic bridges by titanium in the Al2O3matrix.


2012 ◽  
Vol 174-177 ◽  
pp. 592-595
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

The organization of nanostructures across extended length scales is a key challenge in the design of integrated materials with advanced functions. PbZr0.52Ti0.48O3multilayer disks which were constructed by oriented rectangle nanoparticles were easily prepared by a simple surfactant-free hydrothermal process. The as-prepared powders were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the as-prepared PZT disks were constructed by self-assembly of rectangle nanoparticles by a perfect manner. The formation mechanism of the products was discussed.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940067
Author(s):  
P. Vitiaz ◽  
N. Lyakhov ◽  
T. Grigoreva ◽  
E. Pavlov

The interaction between a solid inert metal Ir and an active liquid metal Ga during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with high-resolution energy dispersive X-ray microanalysis. The effect of mechanical activation on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and their solubility in acids was investigated. The subsequent extraction of Ga from intermetallic compounds and composites in the mixture of concentrated acids [Formula: see text] makes it possible to produce nanoscale Ir.


2012 ◽  
Vol 528 ◽  
pp. 176-179
Author(s):  
Yong Gang Wang ◽  
Lin Lin Yang ◽  
Xin Wang ◽  
Song Li ◽  
Yu Jiang Wang ◽  
...  

Using polymer as a surfactant, we successfully synthesized of PbTiO3 crystals with a self-assembly structure by a hydrothermal process. The as-obtained powders were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that the presence of PVP, PEG and PVA plays a key role on the formation of self-assembly structure and the corresponding formation mechanism was briefly discussed.


2014 ◽  
Vol 802 ◽  
pp. 102-107 ◽  
Author(s):  
Oscar Olimpio de Araújo Filho ◽  
Rodrigo Tecchio Antonello ◽  
Cezar Henrique Gonzalez ◽  
Severino Leopoldino Urtiga Filho ◽  
Francisco Ambrozio Filho

High speed steels processed by Powder Metallurgy (PM) techniques present better mechanical properties when compared with similar steels obtained by the conventional process of cast to ingot and hot working. PM techniques produce improved microstructures with smaller and better distribution of carbides. Liquid phase sintering high speed steel seems to be a cheaper processing route in the manufacturing of tool steels if compared to the well-known and expansive hot isostatic pressing high speed steels. The introduction of niobium as alloying element began with the object of replacing elements like vanadium (V) and tungsten (W). Phase liquid sintering consists in a manufacturing technique to process high speed steels by powder metallurgy. The aim of this work of research is to process and obtain AISI M2 and M3:2 with and without the addition of niobium carbide by high energy milling, cold uniaxial compaction and vacuum sintering in the presence of a liquid phase. The powders of the AISI M2 and M3:2 were processed by high energy milling adding a small quantity of niobium carbide (6% in mass), then the powders were characterized by means of X-ray diffraction (XRD) and scanning electron Microscopy (SEM) plus energy dispersion spectroscopy (EDS) in order to evaluate the milling process. The powders of the AISI M2 and M3:2 with the addition of niobium carbide (NbC) were uniaxially cold compacted and then submitted to vacuum sintering. The sintered samples had their microstructure, porosity and carbide distribution observed and evaluated by means of Scanning Electron Microscopy (SEM) and the mechanical property of hardness was investigated by means of Vickers hardness tests. At least five samples of each steel were investigated.


Sign in / Sign up

Export Citation Format

Share Document