New Optical Design and Image Assessment of Ultrahigh-Resolution Magnifying Endoscope

2004 ◽  
Vol 43 (No. 11A) ◽  
pp. L1397-L1399 ◽  
Author(s):  
Bongsoo Lee ◽  
Dong Hyun Cho ◽  
Soon-Cheol Chung ◽  
Gwang-Moon Eom ◽  
Kyeong-Seop Kim ◽  
...  
Author(s):  
John W. Coleman

In the design engineering of high performance electromagnetic lenses, the direct conversion of electron optical design data into drawings for reliable hardware is oftentimes difficult, especially in terms of how to mount parts to each other, how to tolerance dimensions, and how to specify finishes. An answer to this is in the use of magnetostatic analytics, corresponding to boundary conditions for the optical design. With such models, the magnetostatic force on a test pole along the axis may be examined, and in this way one may obtain priority listings for holding dimensions, relieving stresses, etc..The development of magnetostatic models most easily proceeds from the derivation of scalar potentials of separate geometric elements. These potentials can then be conbined at will because of the superposition characteristic of conservative force fields.


Author(s):  
T. Kaneyama ◽  
M. Naruse ◽  
Y. Ishida ◽  
M. Kersker

In the field of materials science, the importance of the ultrahigh resolution analytical electron microscope (UHRAEM) is increasing. A new UHRAEM which provides a resolution of better than 0.2 nm and allows analysis of a few nm areas has been developed. [Fig. 1 shows the external view] The followings are some characteristic features of the UHRAEM.Objective lens (OL)Two types of OL polepieces (URP for ±10' specimen tilt and ARP for ±30' tilt) have been developed. The optical constants shown in the table on the next page are figures calculated by the finite element method. However, Cs was experimentally confirmed by two methods (namely, Beam Tilt method and Krivanek method) as 0.45 ∼ 0.50 mm for URP and as 0.9 ∼ 1.0 mm for ARP, respectively. Fig. 2 shows an optical diffractogram obtained from a micrograph of amorphous carbon with URP under the Scherzer defocus condition. It demonstrates a resolution of 0.19 nm and a Cs smaller than 0.5 mm.


Author(s):  
Keiichi Tanaka

With the development of scanning electron microscope (SEM) with ultrahigh resolution, SEM became to play an important role in not only cytology but also molecular biology. However, the preparation methods observing tiny specimens with such high resolution SEM are not yet established.Although SEM specimens are usually coated with metals for getting electrical conductivity, it is desirable to avoid the metal coating for high resolution SEM, because the coating seriously affects resolution at this level, unless special coating techniques are used. For avoiding charging effect without metal coating, we previously reported a method in which polished carbon plates were used as substrate. In the case almost all incident electrons penetrate through the specimens and do not accumulate in them, when the specimens are smaller than 10nm. By this technique some biological macromolecules including ribosomes, ferritin, immunoglobulin G were clearly observed.Unfortunately some other molecules such as apoferritin, thyroglobulin and immunoglobulin M were difficult to be observed only by the method, because they had very low contrast and were easily damaged by electron beam.


Author(s):  
K. Fukushima ◽  
T. Kaneyama ◽  
F. Hosokawa ◽  
H. Tsuno ◽  
T. Honda ◽  
...  

Recently, in the materials science field, the ultrahigh resolution analytical electron microscope (UHRAEM) has become a very important instrument to study extremely fine areas of the specimen. The requirements related to the performance of the UHRAEM are becoming gradually severer. Some basic characteristic features required of an objective lens are as follows, and the practical performance of the UHRAEM should be judged by totally evaluating them.1) Ultrahigh resolution to resolve ultrafine structure by atomic-level observation.2) Nanometer probe analysis to analyse the constituent elements in nm-areas of the specimen.3) Better performance of x-ray detection for EDS analysis, that is, higher take-off angle and larger detection solid angle.4) Higher specimen tilting angle to adjust the specimen orientation.To attain these requirements simultaneously, the objective lens polepiece must have smaller spherical and chromatic aberration coefficients and must keep enough open space around the specimen holder in it.


Sign in / Sign up

Export Citation Format

Share Document