Periodically Aligned Submicron Dots of Silicon and Nickel Fabricated by Irradiation with Linearly Polarized Nd:YAG Pulsed Laser

2007 ◽  
Vol 46 (No. 23) ◽  
pp. L556-L558 ◽  
Author(s):  
Kensuke Nishioka ◽  
Susumu Horita
2000 ◽  
Author(s):  
S. Yapoudjian ◽  
M. Ivanova ◽  
Olivier P. Uteza ◽  
Vladimir I. Marine ◽  
Marc L. Sentis

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1123
Author(s):  
Edgar Gutiérrez-Fernández ◽  
Tiberio A. Ezquerra ◽  
Aurora Nogales ◽  
Esther Rebollar

Laser-based methods have demonstrated to be effective in the fabrication of surface micro- and nanostructures, which have a wide range of applications, such as cell culture, sensors or controlled wettability. One laser-based technique used for micro- and nanostructuring of surfaces is the formation of laser-induced periodic surface structures (LIPSS). LIPSS are formed upon repetitive irradiation at fluences well below the ablation threshold and in particular, linear structures are formed in the case of irradiation with linearly polarized laser beams. In this work, we report on the simple fabrication of a library of ordered nanostructures in a polymer surface by repeated irradiation using a nanosecond pulsed laser operating in the UV and visible region in order to obtain nanoscale-controlled functionality. By using a combination of pulses at different wavelengths and sequential irradiation with different polarization orientations, it is possible to obtain different geometries of nanostructures, in particular linear gratings, grids and arrays of nanodots. We use this experimental approach to nanostructure the semiconductor polymer poly(3-hexylthiophene) (P3HT) and the ferroelectric copolymer poly[(vinylidenefluoride-co-trifluoroethylene] (P(VDF-TrFE)) since nanogratings in semiconductor polymers, such as P3HT and nanodots, in ferroelectric systems are viewed as systems with potential applications in organic photovoltaics or non-volatile memories.


Author(s):  
Chen Shi ◽  
Long Huang ◽  
Xiaolin Wang ◽  
Rongtao Su ◽  
Pu Zhou ◽  
...  

2007 ◽  
Vol 1059 ◽  
Author(s):  
Kensuke Nishioka ◽  
Susumu Horita

ABSTRACTPeriodic arrays of nano-sized Si and Ni dots were fabricated by only irradiating a linearly polarized Nd:YAG pulsed laser beam to Si and Ni thin films deposited on silicon dioxide (SiO2) film. The interference between an incident beam and a scattered surface wave leads to the spatial periodicity of beam energy density distribution on the surface of the irradiated samples. A thin film was melted using a laser beam, and the molten film was split and condensed owing to its surface tensile according to the periodic energy density distribution. Then, the fine lines (line and space structure) were formed periodically. After the formation of fine lines, the sample was rotated by 90°, and the laser beam was irradiated. The periodic energy density distribution was generated on the fine lines, and the lines split and condensed according to the periodic energy density distribution. Eventually, the periodically aligned nano-sized dots were fabricated on the SiO2 film.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


Sign in / Sign up

Export Citation Format

Share Document