scholarly journals Evolution of the Convection Rolls in Low Prandtl Number Fluids

1986 ◽  
Vol 76 (1) ◽  
pp. 333-333
Author(s):  
Hideo Yahata

Convective instabilities of a self-gravitating, rapidly rotating fluid spherical shell are investigated in the presence of an imposed azimuthal axisymmetric magnetic field in the form of the toroidal decay mode that satisfies electrically insulating boundary conditions and has dipole symmetry. Concentration is on two major questions: how purely thermal convection of the different forms (Zhang 1992, 1994) is affected by the Lorentz force, the strength of which is measured by the Elsasser number ∧, and in what manner purely magnetic instabilities in a spherical shell (Zhang & Fearn 1993, 1994) are associated with magnetic convection. It is found that the two-dimensionality of purely thermal convection (Busse 1970) survives under the influence of a strong Lorentz force. Convective motions always attempt to satisfy the Proudman–Taylor constraint and remain predominantly two-dimensional in the whole range of ∧, 0 ≤ ∧ ≤ ∧ c , where ∧ c ═ O (10) is the critical Elsasser number for purely magnetic instabilities. Though the optimum azimuthal wave number m of convection rolls decreases drastically, from m ~ O ( T 1/6 ) at ∧ ═ 0 to m ═ O (5) at ∧ ═ O (1). We show that there exist no optimum values of ∧ that can give rise to an overall minimum of the (modified) Rayleigh number R *; the optimum value of R * is a monotonically, smoothly decreasing function of ∧, from R * ═ O ( T 1/6 ) at ∧ < O ( T -1/6 ) to R * ═ O (–10) at ∧ ═ 20. We also show that the influence of the magnetic field on thermal convection is crucially dependent on the size of the Prandtl number. At sufficiently small Prandtl number, the Poincaré convection mode (Zhang 1994) is preferred in the region 0 ≤ ∧ < ∧ c , and is only slightly affected by the presence of the toroidal magnetic field. Analytical solutions of the magnetic convection problem are then obtained based on a perturbation analysis, showing a good agreement with the numerical solution.


Author(s):  
N. Riahi

AbstractFinite amplitude oscillatory convection rolls in the form of travelling waves are studied for a horizontal layer of a low Prandtl number fluid heated from below and rotating rapidly about a vertical axis. The results of the stability and nonlinear analyses indicate that there is no subcritical instability and that the oscillatory rolls are unstable for the ranges of the Prandtl number and the rotation rate considered in this paper.


1997 ◽  
Vol 350 ◽  
pp. 149-175 ◽  
Author(s):  
THOMAS BOECK ◽  
ANDRÉ THESS

Two-dimensional surface-tension-driven Bénard convection in a layer with a free-slip bottom is investigated in the limit of small Prandtl number using accurate numerical simulations with a pseudospectral method complemented by linear stability analysis and a perturbation method. It is found that the system attains a steady state consisting of counter-rotating convection rolls. Upon increasing the Marangoni number Ma the system experiences a transition between two typical convective regimes. The first one is the regime of weak convection characterized by only slight deviations of the isotherms from the linear conductive temperature profile. In contrast, the second regime, called inertial convection, shows significantly deformed isotherms. The transition between the two regimes becomes increasingly sharp as the Prandtl number is reduced. For sufficiently small Prandtl number the transition from weak to inertial convection proceeds via a subcritical bifurcation involving weak hysteresis. In the viscous zero-Prandtl-number limit the transition manifests itself in an unbounded growth of the flow amplitude for Marangoni numbers beyond a critical value Mai. For Ma<Mai the zero-Prandtl-number equations provide a reasonable approximation for weak convection at small but finite Prandtl number. The possibility of experimental verification of inertial Bénard–Marangoni convection is briefly discussed.


1986 ◽  
Vol 164 ◽  
pp. 469-485 ◽  
Author(s):  
E. W. Bolton ◽  
F. H. Busse ◽  
R. M. Clever

The analysis of the instabilities of convection rolls in a fluid layer heated from below with no-slip boundaries exhibits a close competition between various oscillatory modes in the range 2 [lsim ] P [lsim ] 12 of the Prandtl number P. In addition to the even-oscillatory instability known from earlier work two new instabilities have been found, each of which is responsible for a small section of the stability boundary of steady rolls. The most interesting property of the new instabilities is their close relationship to the hot-blob oscillations known from experimental studies of convection. In the lower half of the Prandtl-number range considered the B02-mode dominates, which is characterized by two blobs each of slightly hotter and colder fluid circulating around in the convection roll in a spatially and time-periodic fashion. At higher Prandtl numbers the BE 1-mode dominates, which possesses one hot blob (and one cold blob) circulating with the convection velocity. Just outside the stability boundary there exist other growing modes exhibiting three or four blobs which may be observable in experiments.


1979 ◽  
Vol 91 (2) ◽  
pp. 319-335 ◽  
Author(s):  
F. H. Busse ◽  
R. M. Clever

The instabilities of two-dimensional convection rolls in a horizontal fluid layer heated from below are investigated in the case when the Prandtl number is seven or lower. Two new mechanisms of instability are described theoretically as well as experimentally. The knot instability causes the transition to spoke-pattern convection at higher Rayleigh numbers while the skewed varicose instability accomplishes a change to larger horizontal wavelengths of the convection rolls. Both instabilities disappear in the limits of small and large Prandtl number. Although the experimental methods fail in realizing closely the infinitely conducting boundaries assumed in the theory, the observations agree in all qualitative aspects with the theoretical predictions.


2019 ◽  
Vol 874 ◽  
pp. 76-101 ◽  
Author(s):  
Oliver Zier ◽  
Walter Zimmermann ◽  
Werner Pesch

This paper reports on a theoretical analysis of convection in an inclined layer of mercury, a common low-Prandtl-number fluid ($Pr=0.025$). The investigation is based on the standard Oberbeck–Boussinesq equations, which are explored as a function of the inclination angle $\unicode[STIX]{x1D6FE}$ and for Rayleigh numbers $R$ in the vicinity of the convection onset. Along with the conventional Galerkin methods to study convection rolls and their secondary instabilities, we employ direct numerical simulations for fluid layers with quite large aspect ratios. It turns out that, even for small inclination angles $\unicode[STIX]{x1D6FE}\lesssim 6^{\circ }$, the secondary instabilities of the basic rolls lead either to oscillatory three-dimensional patterns or to stationary ones, which appear alternately with increasing $\unicode[STIX]{x1D6FE}$. Due to the competition of these instabilities the patterns may show a complex dynamics.


1971 ◽  
Vol 47 (2) ◽  
pp. 305-320 ◽  
Author(s):  
F. H. Busse ◽  
J. A. Whitehead

An experiment on the stability of convection rolls with varying wave-number is described in extension of the earlier work by Chen & Whitehead (1968). The results agree with the theoretical predictions by Busse (1967a) and show two distinct types of instability in the form of non-oscillatory disturbances. The ‘zigzag instability’ corresponds to a bending of the original rolls; in the ‘cross-roll instability’ rolls emerge at right angles to the original rolls. At Rayleigh numbers above 23,000 rolls are unstable for all wave-numbers and are replaced by a three-dimensional form of stationary convection for which the name ‘bimodal convection’ is proposed.


Sign in / Sign up

Export Citation Format

Share Document