The Sticklepath-Lustleigh fault zone: Tertiary sinistral reactivation of a Variscan dextral strike-slip fault

1986 ◽  
Vol 143 (3) ◽  
pp. 447-452 ◽  
Author(s):  
S. HOLLOWAY ◽  
R. A. CHADWICK
2017 ◽  
Author(s):  
Sonja H. Wadas ◽  
David C. Tanner ◽  
Ulrich Polom ◽  
Charlotte M. Krawczyk

Abstract. In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the subrosion, we carried out several shear wave reflection seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement, in the form of a NW–SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks (


2018 ◽  
Author(s):  
Emanuela Falcucci ◽  
Maria Eliana Poli ◽  
Fabrizio Galadini ◽  
Giancarlo Scardia ◽  
Giovanni Paiero ◽  
...  

Abstract. We investigated the eastern corner of northeastern Italy, where the NW-SE trending dextral strike-slip fault systems of western Slovenia intersects the south-verging fold and thrust belt of the eastern Southern Alps . The area suffered the largest earthquakes of the region, among which are the 1511 (Mw 6.3) event and the two major shocks of the 1976 seismic sequence, with Mw = 6.4 and 6.1 respectively. The Colle Villano thrust and the Borgo Faris-Cividale strike-slip fault have been first analyzed by interpreting industrial seismic lines and then by performing morpho-tectonic and paleoseismological analyses. These different datasets indicate that the two structures define an active, coherent transpressive fault system that activated twice in the past two millennia, with the last event occurring around the 15th–17th century. The chronological information, and the location of the investigated fault system suggest its activation during the 1511 earthquake.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Lalit M. Joshi ◽  
Pitamber D. Pant ◽  
Bahadur S. Kotlia ◽  
Girish C. Kothyari ◽  
Khayingshing Luirei ◽  
...  

The aim of the present research is to provide the base line details of the NNW-SSE trending Raintoli fault (RF) which is running parallel to the North Almora Thrust (NAT) along the Saryu valley from Seraghat-Naichun to Seri in the central sector of the Uttarakhand Himalaya, India. The RF is characterized as dextral strike slip fault and behaves as a ductile shear zone within the zone of NAT. The dextral sense of shear movement of RF is delineated by the fabric of the shear zone rocks including microscopically observed indicators such as sigma and delta porphyroclasts, quartz c-axis, and the field structural data. Additionally, in the quaternary period the dextral strike slip fault is reactivated with oblique slip component as characterized by various geomorphic indicators, for example, triangular facets, abandoned river channels, unpaired fluvial terraces, and V-shaped valleys with recurrent seismicity. Further, the morphometric parameters including Valley Floor Width to Valley Height (Vf), asymmetry factor (AF), and gradient index (GI) further prove active nature of RF as suggested by low values of hypsometric integration, V-shaped valley, higher gradient index, and tilting of Saryu basin.


2016 ◽  
Author(s):  
A. A. Shah

Abstract. Kashmir Basin in NW Himalaya is considered a Neogene-Quatermary piggyback basin that was formed as result of the continent-continent collision of Indian and Eurasian plates. This model however is recently challenged by a pull-apart basin model, which argues that a major dextral strike-slip fault through Kashmir basin is responsible for its formation. And here it is demonstrated that the new tectonic model is structurally problematic, and conflicts with the geomorphology, geology, and tectonic setting of Kashmir basin. It also conflicts, and contradicts with the various structural features associated with a typical dextral strike-slip fault system where it shows that such a major structure cannot pass through the middle of the basin. It is demonstrated that such a structure is structurally, and kinematically impossible, and could not exist.


EKSPLORIUM ◽  
2021 ◽  
Vol 42 (1) ◽  
pp. 47
Author(s):  
Huzaely Latief Sunan ◽  
Akhmad Khahlil Gibran ◽  
Maulana Rizki Aditama ◽  
Sachrul Iswahyudi ◽  
Fajar Rizki Widiatmoko ◽  
...  

ABSTRAK Keberadaan struktur geologi sering dikaitkan dengan bencana tanah longsor dan gempa bumi. Daerah Kalibening merupakan lokasi yang cukup menarik untuk dilakukan penelitian terkait hal tersebut. Daerah ini tersusun atas satuan batuan berumur Pleistosen dan Resen. Berdasarkan stratigrafinya, batuan tersebut terpotong oleh struktur sesar. Hal ini berarti menjadikan sesar di daerah tersebut termasuk dalam kategori sesar aktif. Morfologi yang tinggi dengan suatu cekungan di tengahnya mengindikasikan bahwa daerah tersebut pembentukannya dipengaruhi oleh sesar. Penelitian ini bertujuan untuk menentukan pola struktur geologi yang mengontrol daerah penelitian. Untuk menentukan pola struktur geologi, digunakan metode pemetaan struktur Fault Fracture Density (FFD) yang dikombinasikan dengan peta residual anomali Bouguer dan peta kelurusan hillshade. Secara umum, hal yang paling penting dalam mempelajari struktur geologi adalah geometri elemen struktur. Model konseptual struktur geologi selanjutnya digunakan untuk menganalisis potensi likuefaksi yang ada pada daerah penelitian. Interpretasi struktur menunjukkan adanya sesar mendatar dekstral yang diikuti sesar-sesar penyerta dan cekungan pull-apart yang diduga merupakan hasil pensesaran normal yang timbul dari mekanisme strike-slip. Sesar mendatar dekstral ini menghasilkan cekungan yang terisi oleh sedimen lepas yang rentan mengalami likuefaksi jika terjadi gempa bumi dan gerakan tanah. Kajian ini menyimpulkan bahwa daerah Kalibening rentan terjadi likuefaksi karena adanya pergerakan sesar mendatar dekstral, sedimen lepas yang mendominasi daerah penelitian, dan muka air tanah yang dangkal. ABSTRACT The existence of geological structures is often associated with landslides and earthquakes. The Kalibening area is an interesting location for research on that purpose. This area is composed of Pleistocene and Recent rocks units. Based on its stratigraphy, the rocks in the area are truncated by fault structure. It means that the fault in the area is categorized as an active fault. The high morphology and a basin existence on its center indicate that the area formation was controlled by faults. The research is carried out to determine the trend of the geological structures that control the study area. To determine the trend of the geological structure, a structural mapping method of Fault Fracture Density (FFD) map combined with the Bouguer anomaly residual map and hillshade lineaments map is used. In general, the most important thing in the study of structural geology is the geometry of the structural elements. The conceptual model of geological structures is subsequently used to analyze the liquefaction potential of the study area. The interpretation of the structures shows the existence of dextral strike-slip fault followed by companion faults and pull-apart basin that is inferred as the result of normal faulting in the strike-slip mechanism. The dextral strike-slip fault produces a basin filled with loose sediment that is prone to liquefaction in the event of an earthquake and ground motion. This study concludes that the Kalibening area is prone to liquefaction due to the existence of the movement of dextral strike-slip fault, loose sediments that dominate the study area, and shallow groundwater table.


2021 ◽  
Author(s):  
Sandro Truttmann ◽  
Tobias Diehl ◽  
Marco Herwegh

<p>The Rawil depression north of the Rhone Simplon fault zone (southwestern Swiss Alps) was host of the Mw = 5.8 Sion earthquake in 1946 (Fäh et al., 2011). It is nowadays one of the seismically most active regions in Switzerland and seismicity forms a cluster, which is elongated approximately in WSW-ENE direction over 40-50 km. In November 2019, a remarkable earthquake sequence occurred within the center of this cluster north of the village of Anzère, with more than 300 earthquakes up to ML = 3.3 recorded by the Swiss Seismological Service within 20 days.</p><p>Detecting associated full-scale 3D fault patterns solely based on earthquake hypocenters is challenging because of commonly too limited spatial resolution and insufficient number of seismic events. Within the framework of SeismoTeCH, we aim to improve these limitations by a combination of high-precision hypocenter relocation techniques, reconstruction of subsurface fault patterns and correlative links between surface and subsurface data. Assuming that a fault is seismically active multiple times and that the seismic stress-release is initiated at different locations along the fault, we can calculate 3D fault plane orientations from the hypocenter locations. Together with the 17 focal mechanisms derived for the Anzère sequence, we are able to gain geometrical and kinematic information of the seismic faults in 3D. Our analysis reveals a seismically active transpressional step-over structure within a dextral strike-slip fault zone. With remote sensing and field observations, we detect exhumed faults with similar orientations and kinematics that presumably represent step-over structures, interconnecting previously known strike-slip fault zones.</p><p>Although seismic activity occurs at depths between 3-5 km, we conclude that the observed surface fault systems in the Rawil depression can be correlated in terms of fault patterns with those assumed at depth. The linkage of the recent seismicity with structural observations of exhumed, potentially paleo-seismic faults in combination with recent hypocenter relocation techniques therefore have great potential to provide further insights into fault linkage and earthquake rupturing processes.</p><p> </p><p><strong>References</strong></p><p>Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., Allmann, B., Bethmann, F., Wössner, J., Gassner-Stamm, G., Fritsche, S., Eberhard, D., 2011. ECOS-09 Earthquake Catalogue of Switzerland Release 2011. Report and Database. Public catalogue, 17.4.2011. Swiss Seismological Service ETH Zürich, Report SED/RISK/R/001/20110417.</p>


1991 ◽  
Vol 81 (1) ◽  
pp. 109-130
Author(s):  
Thomas S. Yelin ◽  
Howard J. Patton

Abstract Portland, Oregon, lies in the southern half of an approximately rectangular basin measuring 30 by 50 km. Since 1969, there have been no earthquakes with M ≥ 4.0 in or on the margins of the Portland basin, but this level of seismicity may not be characteristic of the region. Using microseismicity data collected by the University of Washington regional short-period seismograph network for the period mid-1982 through 1989, we have determined P-wave focal mechanisms for four individual earthquakes and three groups of earthquakes. We have also relocated the 6 November 1962, MW = 5.2 Portland earthquake and analyzed regional surface-wave recordings of this event, using the seismic moment-tensor inversion technique. The results of these seismic analyses, along with geologic and other geophysical data, are integrated into a seismotectonic model of the Portland basin. The P-wave mechanisms are compatible with dextral strike-slip motion along approximately NW-striking fault zones bounding the eastern and western margins of the basin. We speculate that there is a dextral strike-slip fault zone, which we call the Frontal Fault Zone, along the eastern margin of the Portland basin. The western margin has been previously recognized as a zone of dextral strike-slip faulting, known as the Portland Hills Fault Zone. The epicenter of the 1962 earthquake is located between the two fault zones and lies approximately 15 km NE of downtown Portland. Our preferred mechanism is normal faulting on NE- or NNE-trending fault planes. These results support the hypothesis posed by previous investigators that the Portland basin is a pull-apart basin and are evidence for contemporary crustal extension between the Frontal and Portland Hills fault zones.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Afroz Ahmad Shah ◽  
Mohammad Noor Firdhaus bin Yassin ◽  
Muhammad Izzat Izzuddin bin Haji Irwan

Kashmir Basin in NW Himalaya is considered a Neogene-Quatermary piggyback basin that was formed as result of the continent-continent collision of Indian and Eurasian plates. This model however is recently challenged by a pull-apart basin model, which argues that a major dextral strike-slip fault that runs through the Kashmir basin is responsible for its formation. And here it is demonstrated that this tectonic model is structurally unrealistic, and poses problems with geomorphology, geology, and tectonic setting of Kashmir basin. The major flaw of the model remains its orientation, and geometry, because a major dextral fault, which form a pull-apart basin, cannot cut through the center of a basin. It is therefore shown that the recently suggested pull-apart model is structurally impossible, and thus the Central Kashmir Fault (CKF), a proposed major dextral fault of Alam et al. (2015), could not exist.


Sign in / Sign up

Export Citation Format

Share Document