The Alba Field, Block 16/26a, UK North Sea

2020 ◽  
Vol 52 (1) ◽  
pp. 637-650 ◽  
Author(s):  
Ian Moore ◽  
James Archer ◽  
David Peavot

AbstractThe Alba Field is a relatively heavy oil accumulation lying in an Eocene deep-water channel complex in Block 16/26a of the Central North Sea. With an estimated 880 MMbbl in place, the reservoir is characterized by thick, high net/gross sands with excellent reservoir properties and rock physics favourable for seismic property detection. The field has been developed by horizontal production wells, with pressure support provided by seawater injectors. After 24 years of production, more than 427 MMbbl have been recovered.Over the course of the development, the results of development drilling and improved reservoir imaging from seismic have revealed greater reservoir complexity than anticipated at sanction. The highly irregular reservoir geometry is likely to reflect the internal stacking patterns of channel elements within the channel complex that are locally overprinted by post-depositional remobilization. This increased reservoir complexity has required more wells to effectively drain the expected volumes. Despite this, recovery has exceeded estimates from the initial field development plan, reflecting an extremely efficient waterflood. 4D seismic spectacularly images extensive sweep away from injectors and excellent reservoir connectivity. Throughout the development, the application of seismic technologies has been a key enabler for effective reservoir management and, looking forward, maximizing value.

2003 ◽  
Vol 20 (1) ◽  
pp. 691-698
Author(s):  
M. J. Sarginson

AbstractThe Clipper Gas Field is a moderate-sized faulted anticlinal trap located in Blocks 48/19a, 48/19c and 48/20a within the Sole Pit area of the southern North Sea Gas Basin. The reservoir is formed by the Lower Permian Leman Sandstone Formation, lying between truncated Westphalian Coal Measures and the Upper Permian evaporitic Zechstein Group which form source and seal respectively. Reservoir permeability is very low, mainly as a result of compaction and diagenesis which accompanied deep burial of the Sole Pit Trough, a sub basin within the main gas basin. The Leman Sandstone Formation is on average about 715 ft thick, laterally heterogeneous and zoned vertically with the best reservoir properties located in the middle of the formation. Porosity is fair with a field average of 11.1%. Matrix permeability, however, is less than one millidarcy on average. Well productivity depends on intersecting open natural fractures or permeable streaks within aeolian dune slipface sandstones. Field development started in 1988. 24 development wells have been drilled to date. Expected recoverable reserves are 753 BCF.


1991 ◽  
Vol 14 (1) ◽  
pp. 95-102 ◽  
Author(s):  
A. Baumann ◽  
B. O'Cathain

AbstractThe Dunlin Oilfield is located in the East Shetland Basin, 160 km northeast of the Shetland Islands. It lies in UK Blocks 211/23a and 211/24a in about 500 ft of water. The field was discovered in June 1973 by well 211/23-1. The oil accumulation is trapped, in a north-south oriented, tilted fault block at the western margin of the Viking Graben, at a depth of about 8500 ft TVSS. The reservoir is contained in the formations of the Middle Jurassic Brent Group. In the Dunlin area they form a 450 ft thick sequence of sands and intercalated minor shales, which has been deposited by a shore face and delta system prograding northwards across the Viking Graben. The seal is formed by the shales of the Middle/Upper Jurassic Heather Formation. Reservoir properties of the Brent sands are fair to good with porosities of up to 30% and average permeabilities in the range from 10 to 4000 md. Development of the field is carried out from a single platform, from which production started in 1978. To date 40 development wells have been drilled and the total cumulative production amounts to 282 MMBBL of an ultimate recovery of 363 MMBBL.


1991 ◽  
Vol 14 (1) ◽  
pp. 369-376 ◽  
Author(s):  
G. J. McGann ◽  
S. C. H. Green ◽  
S. D. Harker ◽  
R. S. Romani

AbstractThe Scapa Field is located in UK North Sea Block 14/19 in the Witch Ground Graben, 112 miles northeast of Aberdeen. The field was discovered in 1975 by the 14/19–9 well which tested 32° API crude from the Scapa Sandstone Member of the Early Cretaceous Valhall Formation. The field is a combination structural/stratigraphic trap situated in a NW–SE trending syncline. Updip limit to the NE is by onlap termination of the reservoir sands onto the Claymore tilt block, and to the southwest by fault closure and/or sand pinch-out into tight conglomerates associated with the Halibut Shelf boundary fault. Two thinly bedded, fine- to medium-grained turbidite sand units, in partial pressure communication, form the oil–bearing zone within the Scapa Sandstone Member.Original oil in place was 206 MMBBL. In 1984, prior to development, a long-term production test was conducted via a deviated well drilled from the Claymore platform. Subsequent wells were thus drilled in a dynamic reservoir-pressure environment. Field development utilizes an integrated production/injection subsea template system tied back to the Claymore platform. Template production commenced in 1986 from currently estimated proved ultimate recoverable reserves of 63 MMBBL and averaged 28 000 BOPD in June 1988 from four production wells supported by four injection wells.


2020 ◽  
Vol 52 (1) ◽  
pp. 574-588 ◽  
Author(s):  
B. J. Taylor ◽  
D. W. Jones

AbstractThe Shearwater Field is a high-pressure–high-temperature (HPHT) gas condensate field located 180 km east of Aberdeen in UKCS Blocks 22/30b and 22/30e within the East Central Graben. Shell UK Limited operates the field on behalf of co-venturers Esso Exploration and Production UK Limited and Arco British Limited, via a fixed steel jacket production platform and bridge-linked wellhead jacket in a water depth of 295 ft.Sandstones of the Upper Jurassic Fulmar Formation constitute the primary reservoir upon which the initial field development was sanctioned; however, additional production has been achieved from intra-Heather Formation sandstones, as well as from the Middle Jurassic Pentland Formation. Following first gas in 2000, a series of well failures occurred such that by 2008 production from the main field Fulmar reservoir had ceased. This resulted in a shut-in period for the main field from 2010 before a platform well slot recovery and redevelopment drilling campaign reinstated production from the Fulmar reservoir in 2015. In addition to replacement wells, the redevelopment drilling also included the design and execution of additional wells targeting undeveloped reservoirs and near-field exploration targets, based on the lessons learned during the initial development campaign, resulting in concurrent production from all discovered reservoirs via six active production wells by 2018.


1991 ◽  
Vol 14 (1) ◽  
pp. 347-352 ◽  
Author(s):  
P. L. Cutts

AbstractThe Maureen Oilfield is located on a fault-bounded terrace in Block 16/29a of the UK Sector of the North Sea, at the intersection of the South Viking Graben and the eastern Witch Ground Graben. The field was discovered in late 1972 by the 16/29-1 well, and was confirmed by three further appraisal wells. The reservoir consists of submarine fan sandstones of the Palaeocene Maureen Formation, deposited by sediment gravity flows sourced from the East Shetland Platform. The Palaeocene sandstones, ranging from 140 to 400 ft in thickness, have good reservoir properties, with porosities ranging from 18-25% and permeabilities ranging from 30-3000 md. Hydrocarbons are trapped in a simple domal anticline, elongated NW-SE, which was formed at the Palaeocene level by Eocene/Oligocene-aged movement of underlying Permian salt. The reservoir sequence is sealed by Lista Formation claystones. Geochemical analysis suggests Upper Jurassic Kimmeridge Clay shales have been the source of Maureen hydrocarbons. Estimated recoverable reserves are 210 MMBBL. Twelve production wells have been drilled on the Maureen Field. A further seven water injection wells have been drilled to maintain reservoir pressure.


Sign in / Sign up

Export Citation Format

Share Document