The Impact of Integrated Seismic Solutions on Field Development: The Puffin Field, UK Central North Sea

Author(s):  
S. Paton ◽  
H. de Jong
2016 ◽  
Vol 13 (8) ◽  
pp. 2511-2535 ◽  
Author(s):  
Fabian Große ◽  
Naomi Greenwood ◽  
Markus Kreus ◽  
Hermann-Josef Lenhart ◽  
Detlev Machoczek ◽  
...  

Abstract. Low oxygen conditions, often referred to as oxygen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM-ECOHAM to provide a general characterisation of the different zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub-thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly productive, non-stratified coastal zone, (2) a productive, seasonally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub-thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification periods (>  60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub-thermocline volume implying both a small initial oxygen inventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen deficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which protects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly susceptible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. Thus, primary production followed by remineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen deficiency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.


2003 ◽  
Vol 82 (4) ◽  
pp. 333-337
Author(s):  
M. Rider ◽  
D. Kroon

AbstractA widespread, slumped, redeposited, uppermost Cretaceous chalk interval, up to 60m thick, immediately below the Cretaceous-Tertiary (K-T) boundary, recognised in oil company boreholes across the central North Sea and a major hydrocarbon reservoir, we re-interpret as the result of a single, catastrophic event caused by secondary effects related to the bolide impact at Chicxulub. A thin, dark clay bed immediately above the redeposited chalks, we suggest correlates to the outcropping, Iridium rich, Danish ‘Fish Clay’, rapidly deposited after the impact. Physical effects on sea-floor sediments, caused by the K-T bolide impact, have not previously been interpreted in the North Sea.


2020 ◽  
Vol 52 (1) ◽  
pp. 399-412 ◽  
Author(s):  
Matthew Gibson ◽  
Dominic Riley ◽  
Stephen Kenyon-Roberts ◽  
Jacob Opata ◽  
Andy Beck ◽  
...  

AbstractThe Catcher area fields – Catcher, Varadero and Burgman – were discovered in the Central North Sea between 2010 and 2011. The three fields are found in Block 28/9a. Oil is produced from Eocene sandstones stratigraphically equivalent to the Cromarty and Tay Sandstone members of the Sele and Horda formations, respectively. The reservoir for the Catcher area fields was formed by the large-scale injection of sand from the Eocene Cromarty turbidite system into shallower Sele and Horda Formation mudstones to form the Greater Catcher area injectite complex. The Catcher area development is a floating production, storage and offloading (FPSO) based development, with 18 production and injection wells drilled from two drilling templates per field, tied back to the centrally located BW Offshore Catcher FPSO. A further development well will be drilled in 2020 to complete the base development. A phased approach to development drilling, with focused data acquisition, allowed the well layout and count to be optimized as the fields were being developed. Excellent well results have meant that the well count has been reduced relative to the development plans at sanction while delivering an increase in predicted reserves. Further infill wells and satellite field development drilling is planned for the future.


2020 ◽  
Vol 52 (1) ◽  
pp. 637-650 ◽  
Author(s):  
Ian Moore ◽  
James Archer ◽  
David Peavot

AbstractThe Alba Field is a relatively heavy oil accumulation lying in an Eocene deep-water channel complex in Block 16/26a of the Central North Sea. With an estimated 880 MMbbl in place, the reservoir is characterized by thick, high net/gross sands with excellent reservoir properties and rock physics favourable for seismic property detection. The field has been developed by horizontal production wells, with pressure support provided by seawater injectors. After 24 years of production, more than 427 MMbbl have been recovered.Over the course of the development, the results of development drilling and improved reservoir imaging from seismic have revealed greater reservoir complexity than anticipated at sanction. The highly irregular reservoir geometry is likely to reflect the internal stacking patterns of channel elements within the channel complex that are locally overprinted by post-depositional remobilization. This increased reservoir complexity has required more wells to effectively drain the expected volumes. Despite this, recovery has exceeded estimates from the initial field development plan, reflecting an extremely efficient waterflood. 4D seismic spectacularly images extensive sweep away from injectors and excellent reservoir connectivity. Throughout the development, the application of seismic technologies has been a key enabler for effective reservoir management and, looking forward, maximizing value.


2007 ◽  
Vol 27 (First Serie (1) ◽  
pp. 81-97
Author(s):  
David Newlands ◽  
Alexandra Brehme
Keyword(s):  

2019 ◽  
Vol 58 (2) ◽  
pp. 315-337 ◽  
Author(s):  
Thomas Cogswell

AbstractHistorians have not paid close attention to the activities of freebooters operating out of Dunkirk in the late 1620s. This essay corrects that omission by first studying the threat from Dunkirk to England's east coast and then addressing how the central government, counties, and coastal towns responded. A surprisingly rich vein of manuscript material from Great Yarmouth and particularly from the Suffolk fishing community of Aldeburgh informs this case study of the impact of this conflict around the North Sea.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Sign in / Sign up

Export Citation Format

Share Document