scholarly journals About this title - HP–UHP Metamorphism and Tectonic Evolution of Orogenic Belts

10.1144/sp474 ◽  
2019 ◽  
Vol 474 (1) ◽  
pp. NP-NP
2019 ◽  
Vol 474 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Lifei Zhang ◽  
Zeming Zhang ◽  
Hans-Peter Schertl ◽  
Chunjing Wei

1994 ◽  
Vol 131 (1) ◽  
pp. 123-136 ◽  
Author(s):  
G. I. Alsop

AbstractBroad zones of distributed shear operating through mid-crustal regions of orogenic belts may incorporate narrow horizons of intense localized deformation culminating in discrete, large magnitude displacements. The relative importance and relationship between distributed and localized shear are influenced by a variety of factors including lithological variation, pre-existing structural anisotropy, strain rate and migration of fluids. Rigorous structural analysis of lower amphibolite facies Dalradian metasediments in northwestern Ireland demonstrates that an early (D1) discrete ductile detachment was subsequently reactivated during distributed non-coaxial D2 deformation operating in a broad zone through the structural pile. Regional shear was directed towards the southeast and resulted in the generation and translation of kilometre-scale, isoclinal, recumbent sheath folds which close and face towards the transport direction. The D1 detachment is clearly folded around the hinges of these major folds, whilst on fold limbs it was reactivated and acted as a local décollement within the zone of distributed shear. Shear criteria along the detachment indicate a southeast-directed translation of the major folds, in sympathy with regional shear. A broad zone of D3 translation operating through the nappe pile resulted in coaxial refolding of large scale F2 folds by the D3 Ballybofey Nappe producing a complex fold interference pattern. Non-coaxial D3 deformation resulted in continued reactivation of local decollements, together with the initiation of east-southeast directed oblique thrusts and partial dismemberment of D2 folds. Detailed structural investigation allows concepts of distributed and localized shear to be evaluated and models of crustal deformation to be assessed.


1974 ◽  
Vol 11 (11) ◽  
pp. 1586-1593 ◽  
Author(s):  
R. D. Dallmeyer

Biotite and hornblende from high-grade, granitic gneisses exposed between the Matagami-Chibougamau and Frotet-Troilus greenstone belts in Quebec have been affected by Kenoran metamorphism. Biotites record total gas 40Ar/39Ar ages of 2308 ± 30 m.y. and 2338 ± 30 m.y. Incrementally released gas fractions yield similar plateau ages, suggesting that the biotites have been totally degassed as a result of the thermal event. The ages are interpreted as reflecting the time of post-metamorphic cooling when radiogenic 40Ar began to be retained within biotite. Hornblendes record total gas 40Ar/39Ar ages of 2517 ± 40 m.y. and 2610 ± 40 m.y. Incrementally released gas fractions show a wide deviation from the total gas ages, with a continuous increase in age from low to high temperature release fractions. This lack of correlation suggests that the hornblendes have been only partially degassed by Kenoran metamorphism. However, lack of a high-temperature release plateau indicates that original meramorphic crystallization was older than the ages recorded by the highest temperature release fractions (2599 ± 40 and 2801 ± 40 m.y.). Recognition of an older sialic terrain between these greenstone belts supports recent models proposed for the tectonic evolution of the supracrustal orogenic belts in the Superior Province.


2016 ◽  
Vol 30 ◽  
pp. 1-5 ◽  
Author(s):  
Yunpeng Dong ◽  
Inna Safonova ◽  
Tao Wang

2018 ◽  
Vol 155 (2) ◽  
pp. 229-232 ◽  
Author(s):  
G. CAPPONI ◽  
A. FESTA ◽  
G. REBAY

The study of the evolution of ocean basins from birth to death is crucial for the understanding of the geodynamic evolution of orogenic systems. Exhumed ophiolite-bearing orogenic belts represent significant fossil analogues of different types of modern oceanic basins, allowing detailed multiscale and multidisciplinary investigations. Such investigations are highly important to our understanding of the ancient and modern geodynamic processes connected to the different stages of complete tectonic evolution, from rifting to subduction, collision and exhumation.


2022 ◽  
Vol 369 ◽  
pp. 106522
Author(s):  
Sankar Bose ◽  
Nilanjana Sorcar ◽  
Kaushik Das ◽  
Proloy Ganguly ◽  
Sneha Mukherjee

2020 ◽  
Author(s):  
Yirang Jang ◽  
Sanghoon Kwon ◽  
Sung Won Kim

<p>Paleozoic orogenic belts developed between the basement rocks in the southern Korean Peninsula records important information to reconstruct the tectonic evolution of East Asia. Here we present SHRIMP and LA–(MC)–ICP MS U-Pb ages and Hf isotopes of detrital zircon grains from the Paleozoic metasedimentary successions that are incorporated into the major Phanerozoic orogenic belts (Okcheon and Hongseong-Imjingang Belts) in South Korea, providing new insights into provenances and tectonic evolution during the Paleozoic period. Based on the internal structures of the zircons from all the samples, they are mostly derived from igneous source rocks, showing two distinct spectra patterns in their presence/absence of Neoproterozoic ages. Our results suggest that (1) the presence/absence of the Grenville-age (ca. 1.3–0.9 Ga) detrital zircons and Hf data from the Early Paleozoic Joseon Supergroup in the Okcheon Belt suggest their derivations from different peripheral clastic provenances at least after the Early Cambrian, (2) ages and Hf isotope signatures of dominant Early Neoproterozoic and Silurian-Devonian detrital zircon populations from the Middle Paleozoic metasedimentary rocks in the Hongseong-Imjingang Belt reflect magmatic history involving juvenile input and crustal reworking, and (3) zircons from the Late Paleozoic Pyeongan Supergroup in the Okcheon Belt display dominant Paleoproterozoic and Carboniferous-Permian ages with Hf patterns showing vertical mixing trends between juvenile and recycled crustal material. These results, integrated with U-Pb and Hf isotope data from other parts of the Korean Peninsula and the Chinese cratons, will eventually help to understand the spatial and temporal relations of basins and orogenic belts in the Korean Peninsula, and will further provide important clues about Paleozoic evolution of the Korean Peninsula in relation to the tectonic history of East Asia.</p>


Sign in / Sign up

Export Citation Format

Share Document