Tectonic evolution of the Qinling orogen and adjacent orogenic belts

2016 ◽  
Vol 30 ◽  
pp. 1-5 ◽  
Author(s):  
Yunpeng Dong ◽  
Inna Safonova ◽  
Tao Wang
1994 ◽  
Vol 131 (1) ◽  
pp. 123-136 ◽  
Author(s):  
G. I. Alsop

AbstractBroad zones of distributed shear operating through mid-crustal regions of orogenic belts may incorporate narrow horizons of intense localized deformation culminating in discrete, large magnitude displacements. The relative importance and relationship between distributed and localized shear are influenced by a variety of factors including lithological variation, pre-existing structural anisotropy, strain rate and migration of fluids. Rigorous structural analysis of lower amphibolite facies Dalradian metasediments in northwestern Ireland demonstrates that an early (D1) discrete ductile detachment was subsequently reactivated during distributed non-coaxial D2 deformation operating in a broad zone through the structural pile. Regional shear was directed towards the southeast and resulted in the generation and translation of kilometre-scale, isoclinal, recumbent sheath folds which close and face towards the transport direction. The D1 detachment is clearly folded around the hinges of these major folds, whilst on fold limbs it was reactivated and acted as a local décollement within the zone of distributed shear. Shear criteria along the detachment indicate a southeast-directed translation of the major folds, in sympathy with regional shear. A broad zone of D3 translation operating through the nappe pile resulted in coaxial refolding of large scale F2 folds by the D3 Ballybofey Nappe producing a complex fold interference pattern. Non-coaxial D3 deformation resulted in continued reactivation of local decollements, together with the initiation of east-southeast directed oblique thrusts and partial dismemberment of D2 folds. Detailed structural investigation allows concepts of distributed and localized shear to be evaluated and models of crustal deformation to be assessed.


1974 ◽  
Vol 11 (11) ◽  
pp. 1586-1593 ◽  
Author(s):  
R. D. Dallmeyer

Biotite and hornblende from high-grade, granitic gneisses exposed between the Matagami-Chibougamau and Frotet-Troilus greenstone belts in Quebec have been affected by Kenoran metamorphism. Biotites record total gas 40Ar/39Ar ages of 2308 ± 30 m.y. and 2338 ± 30 m.y. Incrementally released gas fractions yield similar plateau ages, suggesting that the biotites have been totally degassed as a result of the thermal event. The ages are interpreted as reflecting the time of post-metamorphic cooling when radiogenic 40Ar began to be retained within biotite. Hornblendes record total gas 40Ar/39Ar ages of 2517 ± 40 m.y. and 2610 ± 40 m.y. Incrementally released gas fractions show a wide deviation from the total gas ages, with a continuous increase in age from low to high temperature release fractions. This lack of correlation suggests that the hornblendes have been only partially degassed by Kenoran metamorphism. However, lack of a high-temperature release plateau indicates that original meramorphic crystallization was older than the ages recorded by the highest temperature release fractions (2599 ± 40 and 2801 ± 40 m.y.). Recognition of an older sialic terrain between these greenstone belts supports recent models proposed for the tectonic evolution of the supracrustal orogenic belts in the Superior Province.


2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Chun-Wan Wei ◽  
Cheng Xu ◽  
Anton R Chakhmouradian ◽  
Marco Brenna ◽  
Jindrich Kynicky ◽  
...  

Abstract Mantle-derived carbonatites emplaced in orogenic belts and some extensional settings are hypothesized to contain recycled crustal material. However, these carbonatites are typically composed of calcite showing a typical mantle range of C–O isotopic values devoid of recognizable sedimentary fingerprints. Here, we report the first known instance of C–Sr isotope decoupling between intimately associated dolomite carbonatites and magnetite–forsterite–calcite carbonatites from the northern Qinling orogen, central China. The calcite-dominant variety is developed at the contact between the dolomite carbonatite and metasomatized wall-rock gneiss. The two types of carbonatites have similar δ18OVSMOW (6·98‰ to 9·96‰), εNd(i) (-3·01 to -6·47) and Pb (206Pb/204Pb(i) = 17·369–17·584, 207Pb/204Pb(i) = 15·443–15·466) isotopic compositions, but significantly different C and Sr isotopic signatures (δ13CVPDB = -3·09 to -3·58‰ and -6·11 to -7·19‰; 87Sr/86Sr(i) = 0·70373 to 0·70565 vs 0·70565 to 0·70624 for the dolomite and calcite rocks, respectively). The relative enrichment of the early-crystallizing dolomite carbonatite in 13C and its depletion in 87Sr are primary isotopic characteristics inherited from its mantle source. The observed field relations, petrographic and geochemical characteristics of the Caotan dolomite and calcite carbonatites imply that the strong C–Sr isotopic decoupling between them could not result from mixing of different mantle reservoirs (e.g. HIMU and EM1), or from magma fractionation processes. We propose that the calcite carbonatites were a by-product of metasomatic reactions between primary dolomitic melts and felsic wall-rock. These reactions involved the loss of Mg and CO2 from the magma, leading to depletion of the evolved calcite-saturated liquid in 13C and its enrichment in radiogenic Sr. We conclude that calcite carbonatites in plate-collision zones may not represent primary melts even if their isotopic signature is recognizably ‘mantle-like’.


2011 ◽  
Vol 41 (3) ◽  
pp. 213-237 ◽  
Author(s):  
Yunpeng Dong ◽  
Guowei Zhang ◽  
Franz Neubauer ◽  
Xiaoming Liu ◽  
Johann Genser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document