The 'Grande Coupure' in the Hampshire Basin, UK: taxonomy and stratigraphy of the mammals on either side of this major Palaeogene faunal turnover

Author(s):  
J.J. Hooker
2004 ◽  
Vol 83 (3) ◽  
pp. 187-192
Author(s):  
R. Smith

AbstractInsectivore remains are not common in the Lower Oligocene of Europe. For this reason, the study of the earliest Oligocene insectivore fauna (MP 21) from Boutersem and Hoogbutsel, all together yielding nine species, representing five families, constitutes an important progress in the knowledge of the Late Eocene and Early Oligocene insectivore evolution. Some of the genera discovered in Belgium are known from upper Eocene sites (Saturninia, Amphidozotherium, Euronyctia, Eotalpa), whereas others are not known before the Oligocene (Butselia, Tetracus, Heterosoricinae ind.). The co-occurrence of primitive species of Nyctitheriidae with modern forms belonging to the Plesiosoricidae, Talpidae and Erinaceidae at the Eocene-Oligocene boundary suggests a transition fauna. Between the Priabonian (Late Eocene) and the Rupelian (Early Oligocene), the endemic European insectivores were in competition with the new immigrants. This faunal turnover is generally accepted as the ‘Grande Coupure’ event (the MP 21 event).


2004 ◽  
Vol 83 (3) ◽  
pp. 187-192 ◽  
Author(s):  
R. Smith

AbstractInsectivore remains are not common in the Lower Oligocene of Europe. For this reason, the study of the earliest Oligocene insectivore fauna (MP 21) from Boutersem and Hoogbutsel, all together yielding nine species, representing five families, constitutes an important progress in the knowledge of the Late Eocene and Early Oligocene insectivore evolution. Some of the genera discovered in Belgium are known from upper Eocene sites (Saturninia, Amphidozotherium, Euronyctia, Eotalpa), whereas others are not known before the Oligocene (Butselia, Tetracus, Heterosoricinae ind.). The co-occurrence of primitive species of Nyctitheriidae with modern forms belonging to the Plesiosoricidae, Talpidae and Erinaceidae at the Eocene-Oligocene boundary suggests a transition fauna. Between the Priabonian (Late Eocene) and the Rupelian (Early Oligocene), the endemic European insectivores were in competition with the new immigrants. This faunal turnover is generally accepted as the ‘Grande Coupure’ event (the MP 21 event).


2020 ◽  
Vol 24 (1-2) ◽  
pp. 1-16
Author(s):  
Floréal SOLÉ ◽  
Valentin FISCHER ◽  
Julien DENAYER ◽  
Robert P. SPEIJER ◽  
Morgane FOURNIER ◽  
...  

The Quercy Phosphorites Formation in France is world famous for its Eocene to Miocene faunas, especially those from the upper Eocene to lower Oligocene, the richest of all. The latter particularly helped to understand the ‘Grande Coupure’, a dramatic faunal turnover event that occurred in Europe during the Eocene-Oligocene transition. Fossils from the Quercy Phosphorites were excavated from the middle 19th century until the early 20th century in a series of sites and became subsequently dispersed over several research institutions, while often losing the temporal and geographical information in the process. In this contribution, we provide an overview and reassess the taxonomy of these barely known collections housed in three Belgian institutions: the Université de Liège, KU Leuven, and the Royal Belgian Institute of Natural Sciences. We focus our efforts on the carnivorous mammals (Hyaenodonta and Carnivoramorpha) and assess the stratigraphic intervals covered by each collection. These fossils are derived from upper Eocene (Priabonian), lower Oligocene (Rupelian), and upper Oligocene (Chattian) deposits in the Quercy area. The richness of the three collections (e.g., the presence of numerous postcranial elements in the Liège collection), the presence of types and figured specimens in the Leuven collection, and some identified localities in the RBINS collection make these collections of great interest for further studies on systematics and the evolution of mammals around the ‘Grande Coupure’.


2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


Paleobiology ◽  
2017 ◽  
Vol 43 (4) ◽  
pp. 550-568 ◽  
Author(s):  
Michał Zatoń ◽  
Tomasz Borszcz ◽  
Michał Rakociński

AbstractIn this study we focused on the dynamics of encrusting assemblages preserved on brachiopod hosts collected from upper Frasnian and lower Famennian deposits of the Central Devonian Field, Russia. Because the encrusted brachiopods come from deposits bracketing the Frasnian/Famennian (F/F) boundary, the results also shed some light on ecological differences in encrusting communities before and after the Frasnian–Famennian (F-F) event. To explore the diversity dynamics of encrusting assemblages, we analyzed more than 1300 brachiopod valves (substrates) from two localities. Taxon accumulation plots and shareholder quorum subsampling (SQS) routines indicated that a reasonably small sample of brachiopod host valves (n=50) is sufficient to capture the majority of the encrusting genera recorded at a given site. The richness of encrusters per substrate declined simultaneously with the number of encrusting taxa in the lower Famennian, accompanied by a decrease in epibiont abundance, with a comparable decrease in mean encrustation intensity (percentage of bioclasts encrusted by one or more epibionts). Epibiont abundance and occupancy roughly mirror each other. Strikingly, few ecological characteristics are correlated with substrate size, possibly reflecting random settlement of larvae. Evenness, which is negatively correlated with substrate size, shows greater within-stage variability among samples than between Frasnian and Famennian intervals and may indicate the instability of early Famennian biocenoses following the faunal turnover. The occurrence distribution of encrusters points to nonrandom associations and exclusions among several encrusting taxa. However, abundance and occupancy of microconchids remained relatively stable throughout the sampled time interval. The notable decline in abundance (~60%) and relatively minor decline in diversity (~30%) suggest jointly that encrusting communities experienced ecological collapse rather than a major mass extinction event. The differences between the upper Frasnian and lower Famennian encrusting assemblages may thus record a turnover associated with the F-F event.


2013 ◽  
Vol 63 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Alexander Lukeneder ◽  
Patrick Grunert

Abstract Lukeneder, A. and Grunert, P. 2013. Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy). Acta Geologica Polonica, 63 (1), 89-104. Warszawa. New stratigraphic and palaeoenvironmental data are presented for the northeastern part of the Trento Plateau (Puez area, Southern Alps, Italy). The studied section corresponds to the upper Hauterivian Balearites balearis and “Pseudothurmannia ohmi” ammonite zones and normal palaeomagnetic chron upper M5. A c. 30-cm-thick bed is identified as the equivalent of the Faraoni Level, based on its position within the Pseudothurmannia mortilleti Subzone, the composition of its ammonite fauna and the peak of a minor positive trend in the δ 13 C bulk record. Microfacies and geochemical proxies compare well with those of the southeastern part of the Trento Plateau and indicate palaeoceanographic continuity along the eastern margin of the plateau. The abundances of radiolarians and nannoconids suggest a turnover in the trophic structure from eutrophic conditions around the Faraoni Level equivalent to oligotrophic conditions. Low organic matter and sulphur content and frequent bioturbation indicate a well-oxygenated environment. Ammonite diversity and life-habitat groups document the influence of sea level on the plateau: while epi- and mesopelagic ammonites occur commonly during sea-level highstands, all life-habitat groups become reduced during a sea-level lowstand in the Spathicrioceras seitzi and P. ohmi subzones. The Faraoni event is heralded by a faunal turnover expressed as the diversification of epipelagic ammonites. Palaeoenvironmental conditions along the eastern margin of the Trento Plateau during the Faraoni event contrast with those of the organic-rich black shales in the west. A re-evaluation of the depositional model based on the new results suggests a general water depth of 300-500 m for the plateau. The severe reduction of mesopelagic ammonites during the sea-level lowstand indicates a shallowing towards the epi-/mesopelagic boundary. During the Faraoni event, the eastern areas of the Trento Plateau were located at the upper limit of the oxygen-minimum layer and were thus only occasionally affected by oxygen depletion, whereas the western areas were located well within the upper part of the oxygen-depleted layer.


2003 ◽  
Vol 50 ◽  
pp. 105-114
Author(s):  
T. Hansen ◽  
A.T. Nielsen

Over 5000 trilobites have been collected from Lower Ordovician rocks exposed at the Lynna River in the Volkhov region, east of St. Petersburg, Russia. Bed-by-bed sampling has been carried out through the upper part of Volkhov Formation (top of Jeltiaki Member and the entire Frizy Member), the Lynna Formation and the basal part of the Obukhovo Formation. This interval, which is 7.5 metres thick, correlates with the upper part of the Arenig Series, and presumably even ranges into the very base of the Llanvirn. A preliminary biostratigraphical investigation of top Jeltiaki Member (BIIβ), Frizy Member (BIIγ) and basal Lynna Formation (BIIIα) reveals a rather continuous faunal turnover lacking sharp boundaries, and the biostratigraphical zonation (BIIβ–BIIIα) is primarily defined by the index trilobite taxa. The trilobite ranges are generally in agreement with the pattern described by Schmidt in 1907. The abundance ratio between Asaphus and the ptychopygids seems to be related to changes in relative sea level with Asaphus preferring the most shallow water conditions. A tentative interpretation of sea-level changes suggests an initial drowning at the base of BIIγ, immediately followed by a lowstand that in turn was succeeded by a moderate sea-level rise and then a significant fall. The last marks the BIIγ/BIIIα boundary. Correlation with sections in Scandinavia suggests that the basal part of BIIγ is strongly condensed.


Sign in / Sign up

Export Citation Format

Share Document