Interaction techniques for the analysis of complex data on high-resolution displays

Author(s):  
Chreston Miller ◽  
Ashley Robinson ◽  
Rongrong Wang ◽  
Pak Chung ◽  
Francis Quek
2007 ◽  
Vol 57 (5) ◽  
pp. 905-917 ◽  
Author(s):  
Jongho Lee ◽  
Morteza Shahram ◽  
Armin Schwartzman ◽  
John M. Pauly

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liling Zhao ◽  
Hao Yu ◽  
Yan Wang

High-resolution meteorological satellite image is the basic data for weather forecasting, climate prediction, and early warning of various meteorological disasters. However, the poor image resolution is limited for both subjective and automated analyses. Through our investigation and study, we found that the meteorological satellite image is a kind of complex data with multimodal and multitemporal characteristics. Fortunately, based on zero-shot learning theory, the complexity of the meteorological satellite image can be used to enhance its own image resolution. In this work, we propose a novel framework called MSLp (Meteorological Satellite Loss phase). Specifically, we choose a zero-shot network as a backbone and propose a phase loss function. A mapping from low- to high-resolution meteorological satellite images was trained for improving the resolution by up to a factor of 4×. Our quantitative study demonstrates the superiority of the proposed approach over ZSSR and bicubic interpolation. For qualitative analysis, visual tests were performed by 7 meteorologists to confirm the utility of the proposed algorithm. The mean opinion score is 9.32 (the full score is 10). These meteorologists think that weather forecasters need higher-resolution meteorological satellite images and the high-resolution images obtained by our method have the potential to be a great help for weather analysis and forecasting.


2021 ◽  
Vol 108 (Supplement_9) ◽  
Author(s):  
Saqib Rahman ◽  
Joseph Early ◽  
Ben Sharpe ◽  
Megan Lloyd ◽  
Matt De Vries ◽  
...  

Abstract Background Standard of care for locally advanced oesophageal adenocarcinoma is neoadjuvant chemotherapy or chemoradiotherapy followed by surgery. Only a minority of patients (<25%) derive significant survival benefit from neoadjuvant treatment and there are no reliable means of establishing prior to treatment in whom this benefit will occur. Moreover, accurate prediction of survival prior to treatment is also not possible. The availability of machine learning techniques provides the potential to use complex data sources to answer these problems. In this study, we assessed the utility of high-resolution digital microscopy of pre-treatment biopsies in predicting both response to neoadjuvant therapy and overall survival. Methods A total of 157 cases were included in the study. Pre-treatment clinical information, including neoadjuvant treatment, was obtained, along with diagnostic biopsies. Diagnostic biopsies were converted into high-resolution whole slide-images and features extracted using the pre-trained convolutional neural network Xception. Single representative images were converted into patches from which predictive models were trained. Elastic net regression classifiers were derived and validated with bootstrapping and 1000 resampled datasets. The response to treatment was considered according to Mandard tumour regression grade (TRG). Model performance was quantified using the C-index (for TRG) and time-dependent AUC (tAUC, fo Overall survival) along with calibration plots. Results Median survival was 78.9months (95%CI 35.9 months – not reached). Survival at 5-years was 52.1%. Neoadjuvant treatment was received by 123 patients (78.3%), with a significant response seen in 45 cases (36.6%). A response was more likely in those patients who received chemoradiotherapy than chemotherapy (53.3% vs 23.1% p < 0.001) and in older patients (median age 69.4 vs 66.0 years, p = 0.038), with other characteristics similar. A predictive model for response to neoadjuvant treatment derived from image features and clinical data achieved good discrimination (C-index 0.767, 95%CI 0.701-0.833) and calibration. Accuracy of prediction of overall survival was more modest (tAUC 0.640, 95%CI 0.518-0.762). Conclusions Using a small dataset, utility of a feature extraction pipeline in prediction of patient level outcomes has been demonstrated. This was more marked in prediction of response to neoadjuvant treatment than overall survival, which may reflect the importance of pre-treatment clinical data in determining the former outcome. Further study to refine the methodology and confirmation in larger datasets are required before expansion to clinical settings.


2020 ◽  
Vol 86 (3) ◽  
pp. 153-160
Author(s):  
Xiaoyan Lu ◽  
Yanfei Zhong ◽  
Zhuo Zheng ◽  
Ji Zhao ◽  
Liangpei Zhang

Road detection in very-high-resolution remote sensing imagery is a hot research topic. However, the high resolution results in highly complex data distributions, which lead to much noise for road detection—for example, shadows and occlusions caused by disturbance on the roadside make it difficult to accurately recognize road. In this article, a novel edge-reinforced convolutional neural network, combined with multiscale feature extraction and edge reinforcement, is proposed to alleviate this problem. First, multiscale feature extraction is used in the center part of the proposed network to extract multiscale context information. Then edge reinforcement, applying a simplified U-Net to learn additional edge information, is used to restore the road information. The two operations can be used with different convolutional neural networks. Finally, two public road data sets are adopted to verify the effectiveness of the proposed approach, with experimental results demonstrating its superiority.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Sign in / Sign up

Export Citation Format

Share Document