scholarly journals MSLp: Deep Superresolution for Meteorological Satellite Image

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liling Zhao ◽  
Hao Yu ◽  
Yan Wang

High-resolution meteorological satellite image is the basic data for weather forecasting, climate prediction, and early warning of various meteorological disasters. However, the poor image resolution is limited for both subjective and automated analyses. Through our investigation and study, we found that the meteorological satellite image is a kind of complex data with multimodal and multitemporal characteristics. Fortunately, based on zero-shot learning theory, the complexity of the meteorological satellite image can be used to enhance its own image resolution. In this work, we propose a novel framework called MSLp (Meteorological Satellite Loss phase). Specifically, we choose a zero-shot network as a backbone and propose a phase loss function. A mapping from low- to high-resolution meteorological satellite images was trained for improving the resolution by up to a factor of 4×. Our quantitative study demonstrates the superiority of the proposed approach over ZSSR and bicubic interpolation. For qualitative analysis, visual tests were performed by 7 meteorologists to confirm the utility of the proposed algorithm. The mean opinion score is 9.32 (the full score is 10). These meteorologists think that weather forecasters need higher-resolution meteorological satellite images and the high-resolution images obtained by our method have the potential to be a great help for weather analysis and forecasting.

Fractals ◽  
2011 ◽  
Vol 19 (03) ◽  
pp. 347-354 ◽  
Author(s):  
CHING-JU CHEN ◽  
SHU-CHEN CHENG ◽  
Y. M. HUANG

This study discussed the application of a fractal interpolation method in satellite image data reconstruction. It used low-resolution images as the source data for fractal interpolation reconstruction. Using this approach, a high-resolution image can be reconstructed when there is only a low-resolution source image available. The results showed that the high-resolution image data from fractal interpolation can effectively enhance the sharpness of the border contours. Implementing fractal interpolation on an insufficient image resolution image can avoid jagged edges and mosaic when enlarging the image, as well as improve the visibility of object features in the region of interest. The proposed approach can thus be a useful tool in land classification by satellite images.


2021 ◽  
Vol 264 ◽  
pp. 04007
Author(s):  
Aybek Arifjanov ◽  
Shamshodbek Akmalov ◽  
Shakhzod Shodiev ◽  
Abdukarim Haitov

More than 1,000 satellites are launched into space, and they differ in their functions, rotation orbits, resolution, and other properties. Scientists divide the satellites into low-resolution, medium-resolution, high-resolution, and very high-resolution satellites by their properties. Now, the biggest challenge facing scientists is to use some of these different resolution images in their field. To get the expected result, it is very important to analyze the image that needs an which gives more accurate results. Therefore, the main attention of this article is aimed to find the answer to these problems. In this article 3 satellite images which have different resolution are analyzed. The possibility of middle-resolution images of MODIS, high-resolution images of Landsat, and very high-resolution images of WorldView-2 (WV-2) satellites using GIS are analyzed. A research area was the Syrdarya region, and downloaded different images of satellites of this area and compared with using e Cognition. According to the results, a more accurate satellite image for irrigation sets information is WorldView-2 images. In comparison analysis, it shows more accurate properties than other satellite images. As irrigation sets are small objects for the analysis, very high spatial resolution satellite images are important. Water discharge and surface change happen very fast; thus, it requires daily monitoring of the condition. And in this case, the temporal resolution of the MODIS and Landsat is 16 day, and it is a too long period.


Author(s):  
L. Abraham ◽  
M. Sasikumar

In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.


2021 ◽  
Author(s):  
Md Inzamam Ul Haque ◽  
Abhishek K Dubey ◽  
Jacob D Hinkle

Deep learning models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays. Although publicly available chest X-ray datasets include high resolution images, most models are trained on reduced size images due to limitations on GPU memory and training time. As compute capability continues to advance, it will become feasible to train large convolutional neural networks on high-resolution images. This study is based on the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution chest X-ray images, and provided with 14 labels to the corresponding free-text radiology reports. We find, interestingly, that tasks that require a large receptive field are better suited to downscaled input images, and we verify this qualitatively by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, suggesting that multi-scale features are crucially important to information extraction from high-resolution chest X-rays.


2019 ◽  
Vol 11 (9) ◽  
pp. 1097 ◽  
Author(s):  
Aleš Marsetič ◽  
Peter Pehani

This paper presents an automatic procedure for the geometric corrections of very-high resolution (VHR) optical panchromatic satellite images. The procedure is composed of three steps: an automatic ground control point (GCP) extraction algorithm that matches the linear features that were extracted from the satellite image and reference data; a geometric model that applies a rational function model; and, the orthorectification procedure. Accurate geometric corrections can only be achieved if GCPs are employed to precisely correct the geometric biases of images. Due to the high resolution and the varied acquisition geometry of images, we propose a fast, segmentation based method for feature extraction. The research focuses on densely populated urban areas, which are very challenging in terms of feature extraction and matching. The proposed algorithm is capable of achieving results with a root mean square error of approximately one pixel or better, on a test set of 14 panchromatic Pléiades images. The procedure is robust and it performs well in urban areas, even for images with high off-nadir angles.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Donatella Dominici ◽  
Sara Zollini ◽  
Maria Alicandro ◽  
Francesca Della Torre ◽  
Paolo Buscema ◽  
...  

Knowledge of a territory is an essential element in any future planning action and in appropriate territorial and environmental requalification action planning. The current large-scale availability of satellite data, thanks to very high resolution images, provides professional users in the environmental, urban planning, engineering, and territorial government sectors, in general, with large amounts of useful data with which to monitor the territory and cultural heritage. Italy is experiencing environmental emergencies, and coastal erosion is one of the greatest threats, not only to the Italian heritage and economy, but also to human life. The aim of this paper is to find a rapid way of identifying the instantaneous shoreline. This possibility could help government institutions such as regions, civil protection, etc., to analyze large areas of land quickly. The focus is on instantaneous shoreline extraction in Ortona (CH, Italy), without considering tides, using WorldView-2 satellite images (50-cm resolution in panchromatic and 2 m in multispectral). In particular, the main purpose of this paper is to compare commercial software and ACM filters to test their effectiveness.


2012 ◽  
Vol 610-613 ◽  
pp. 3685-3688 ◽  
Author(s):  
Yan Gu ◽  
Ying Zhang ◽  
Zheng Jun Wang

Methods for extracting information about coastline, mean high tide line and mean low tide line from satellite images are investigated based on the satellite images which have a spatial resolution of 10m and were obtained in the coastal area of Yancheng of Jiangsu province in 2006, 2008 and 2009, respectively. The evolution of the coastal zone influenced by human activities such as harbor construction and sea reclamation for farming is analyzed. The results show that (1) comparing with low resolution RS images, the high resolution images can be used to extract more subtle culture features, from which the mean high tidal line can be extracted; (2) by combing with the tidal level of the day and based on the high tidal line extracted already, the instantaneous water line on the images and leaner relationship among them, the mean low tidal line may possibly be worked out; (3) it has been being in an accretion status since 2006, with an increasing magnitude every year, while the mean low tide line was in a dynamic balance status from 2006 to 2008, but was eroded by 840m from 2008 to 2009, being very distinct in its change.


Author(s):  
Y. S. Sun ◽  
L. Zhang ◽  
B. Xu ◽  
Y. Zhang

The accurate positioning of optical satellite image without control is the precondition for remote sensing application and small/medium scale mapping in large abroad areas or with large-scale images. In this paper, aiming at the geometric features of optical satellite image, based on a widely used optimization method of constraint problem which is called Alternating Direction Method of Multipliers (ADMM) and RFM least-squares block adjustment, we propose a GCP independent block adjustment method for the large-scale domestic high resolution optical satellite image – GISIBA (GCP-Independent Satellite Imagery Block Adjustment), which is easy to parallelize and highly efficient. In this method, the virtual "average" control points are built to solve the rank defect problem and qualitative and quantitative analysis in block adjustment without control. The test results prove that the horizontal and vertical accuracy of multi-covered and multi-temporal satellite images are better than 10 m and 6 m. Meanwhile the mosaic problem of the adjacent areas in large area DOM production can be solved if the public geographic information data is introduced as horizontal and vertical constraints in the block adjustment process. Finally, through the experiments by using GF-1 and ZY-3 satellite images over several typical test areas, the reliability, accuracy and performance of our developed procedure will be presented and studied in this paper.


Author(s):  
Warinthorn Kiadtikornthaweeyot ◽  
Adrian R. L. Tatnall

High resolution satellite imaging is considered as the outstanding applicant to extract the Earth’s surface information. Extraction of a feature of an image is very difficult due to having to find the appropriate image segmentation techniques and combine different methods to detect the Region of Interest (ROI) most effectively. This paper proposes techniques to classify objects in the satellite image by using image processing methods on high-resolution satellite images. The systems to identify the ROI focus on forests, urban and agriculture areas. The proposed system is based on histograms of the image to classify objects using thresholding. The thresholding is performed by considering the behaviour of the histogram mapping to a particular region in the satellite image. The proposed model is based on histogram segmentation and morphology techniques. There are five main steps supporting each other; Histogram classification, Histogram segmentation, Morphological dilation, Morphological fill image area and holes and ROI management. The methods to detect the ROI of the satellite images based on histogram classification have been studied, implemented and tested. The algorithm is be able to detect the area of forests, urban and agriculture separately. The image segmentation methods can detect the ROI and reduce the size of the original image by discarding the unnecessary parts.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Ruizhe Wang ◽  
Wang Xiao

Since the traditional adaptive enhancement algorithm of high-resolution satellite images has the problems of poor enhancement effect and long enhancement time, an adaptive enhancement algorithm of high-resolution satellite images based on feature fusion is proposed. The noise removal and quality enhancement areas of high-resolution satellite images are determined by collecting a priori information. On this basis, the histogram is used to equalize the high-resolution satellite images, and the local texture features of the images are extracted in combination with the local variance theory. According to the extracted features, the illumination components are estimated by Gaussian low-pass filtering. The illumination components are fused to complete the adaptive enhancement of high-resolution satellite images. Simulation results show that the proposed algorithm has a better adaptive enhancement effect, higher image definition, and shorter enhancement time.


Sign in / Sign up

Export Citation Format

Share Document