Teachers' perception of teaching problem-solving strategies to novices

Author(s):  
Lavy Bunimovich
Author(s):  
Eva Fülöp

This study uses the methodology of design-based research in search of ways to teach problem-solving strategies in mathematics in an upper secondary school. Educational activities are designed and tested in a class for four weeks. The design of the activities is governed by three design principles, which are based on variation theory. This study aims to contribute to an understanding of how the teaching of problem-solving strategies and strategy thinking in mathematics can be organized in a regular classroom setting and how this affects students´ learning in mathematics. We start by discussing the nature of the concept strategy in relation to the concepts of method and algorithm. Using pre- and post-tests, we compare the development of the students´ conceptual and procedural abilities with a control group. In addition, we use the post-test to investigate the students´ use of problem-solving strategies. The results suggest that these designed activities improve students’ ability to use problem-solving strategies. Moreover, significant differences were found in conceptual and procedural abilities in mathematics, the experimental group improving more than the control groups.


2018 ◽  
Vol 7 (4) ◽  
pp. 191 ◽  
Author(s):  
Elif Ince

Education policies today aim to raise individuals with 21st Century skills considered as a universal necessity and problem-solving skill is the one of the skills that have emerged as a requirement of the 21st century. Teaching problem solving is one of the most important topics of physics education, it is also the field where students have the most problems. While trying to solve physics problems, students often express that they understand the questions, they know the laws of physics on which the problem is based they have solved many similar problems, but the new problem is different from the previous problems therefore they cannot solve the problem. The aim of this study is to present an overview problem solving studies in physics education according to student level, methodology, and development of the problem-solving strategies usage chronologicaly.


Author(s):  
J. Navaneetha Krishnan ◽  
P. Paul Devanesan

The major aim of teaching Mathematics is to develop problem solving skill among the students. This article aims to find out the problem solving strategies and to test the students’ ability in using these strategies to solve problems. Using sample survey method, four hundred students were taken for this investigation. Students’ achievement in solving problems was tested for their Identification and Application of Problem Solving Strategies as a major finding, thirty one percent of the students’ achievement in mathematics is contributed by Identification and Application of Problem Solving Strategies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yang Jiang ◽  
Tao Gong ◽  
Luis E. Saldivia ◽  
Gabrielle Cayton-Hodges ◽  
Christopher Agard

AbstractIn 2017, the mathematics assessments that are part of the National Assessment of Educational Progress (NAEP) program underwent a transformation shifting the administration from paper-and-pencil formats to digitally-based assessments (DBA). This shift introduced new interactive item types that bring rich process data and tremendous opportunities to study the cognitive and behavioral processes that underlie test-takers’ performances in ways that are not otherwise possible with the response data alone. In this exploratory study, we investigated the problem-solving processes and strategies applied by the nation’s fourth and eighth graders by analyzing the process data collected during their interactions with two technology-enhanced drag-and-drop items (one item for each grade) included in the first digital operational administration of the NAEP’s mathematics assessments. Results from this research revealed how test-takers who achieved different levels of accuracy on the items engaged in various cognitive and metacognitive processes (e.g., in terms of their time allocation, answer change behaviors, and problem-solving strategies), providing insights into the common mathematical misconceptions that fourth- and eighth-grade students held and the steps where they may have struggled during their solution process. Implications of the findings for educational assessment design and limitations of this research are also discussed.


Sign in / Sign up

Export Citation Format

Share Document