Fast and Precise Worst-Case Interference Placement for Shared Cache Analysis

2016 ◽  
Vol 15 (3) ◽  
pp. 1-26 ◽  
Author(s):  
Kartik Nagar ◽  
Y. N. Srikant
2012 ◽  
Vol 198-199 ◽  
pp. 523-527
Author(s):  
Fang Yuan Chen ◽  
Dong Song Zhang ◽  
Zhi Ying Wang

Worst-Case Execution Time (WCET) is crucial in real-time systems and is very challenging in multicore processors due to the possible runtime inter-thread interferences caused by shared resources. This paper proposes a novel approach to analyze runtime inter-core interferences for consecutive or inconsecutive concurrent programs. Our approach can reasonably estimate runtime inter-core interferences in shared cache by introducing lifetime and instruction fetching timing relations analysis into address mapping method. Compared with the method based on lifetime alone, our proposed approach efficiently improves the tightness of WCET estimation.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050242
Author(s):  
Yao Wang ◽  
Lijun Sun ◽  
Haibo Wang ◽  
Lavanya Gopalakrishnan ◽  
Ronald Eaton

Cache sharing technique is critical in multi-core and multi-threading systems. It potentially delays the execution of real-time applications and makes the prediction of the worst-case execution time (WCET) of real-time applications more challenging. Prioritized cache has been demonstrated as a promising approach to address this challenge. Instead of the conventional prioritized cache schemes realized at the architecture level by using cache controllers, this work presents two prioritized least recently used (LRU) cache replacement circuits that directly accomplish the prioritization inside the cache circuits, hence significantly reduces the cache access latency. The performance, hardware and power overheads due to the proposed prioritized LRU circuits are investigated based on a 65 nm CMOS technology. It shows that the proposed circuits have very low overhead compared to conventional cache circuits. The presented techniques will lead to more effective prioritized shared cache implementations and benefit the development of high-performance real-time systems.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650062 ◽  
Author(s):  
Gang Chen ◽  
Kai Huang ◽  
Long Cheng ◽  
Biao Hu ◽  
Alois Knoll

Shared cache interference in multi-core architectures has been recognized as one of major factors that degrade predictability of a mixed-critical real-time system. Due to the unpredictable cache interference, the behavior of shared cache is hard to predict and analyze statically in multi-core architectures executing mixed-critical tasks, which will not only result in difficulty of estimating the worst-case execution time (WCET) but also introduce significant worst-case timing penalties for critical tasks. Therefore, cache management in mixed-critical multi-core systems has become a challenging task. In this paper, we present a dynamic partitioned cache memory for mixed-critical real-time multi-core systems. In this architecture, critical tasks can dynamically allocate and release the cache resourse during the execution interval according to the real-time workload. This dynamic partitioned cache can, on the one hand, provide the predicable cache performance for critical tasks. On the other hand, the released cache can be dynamically used by non-critical tasks to improve their average performance. We demonstrate and prototype our system design on the embedded FPGA platform. Measurements from the prototype clearly demonstrate the benefits of the dynamic partitioned cache for mixed-critical real-time multi-core systems.


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


2008 ◽  
Author(s):  
Sonia Savelli ◽  
Susan Joslyn ◽  
Limor Nadav-Greenberg ◽  
Queena Chen

Author(s):  
Akira YAMAWAKI ◽  
Hiroshi KAMABE ◽  
Shan LU
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document