scholarly journals How Asynchrony Affects Rumor Spreading Time

Author(s):  
George Giakkoupis ◽  
Yasamin Nazari ◽  
Philipp Woelfel
2020 ◽  
Vol 32 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Yves Mocquard ◽  
Bruno Sericola ◽  
Emmanuelle Anceaume

10.37236/4314 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Konstantinos Panagiotou ◽  
Ali Pourmiri ◽  
Thomas Sauerwald

We consider the random phone call model introduced by Demers et al., which is a well-studied model for information dissemination on networks. One basic protocol in this model is the so-called Push protocol which proceeds in synchronous rounds. Starting with a single node which knows of a rumor, every informed node calls in each round a random neighbor and informs it of the rumor. The Push-Pull protocol works similarly, but additionally every uninformed node calls a random neighbor and may learn the rumor from it.It is well-known that both protocols need $\Theta(\log n)$ rounds to spread a rumor on a complete network with $n$ nodes. Here we are interested in how much the spread can be speeded by enabling nodes to make more than one call in each round. We propose a new model where the number of calls of a node is chosen independently according to a probability distribution $R$. We provide both lower and upper bounds on the rumor spreading time depending on statistical properties of $R$ such as the mean or the variance (if they exist). In particular, if $R$ follows a power law distribution with exponent $\beta \in (2,3)$, we show that the Push-Pull protocol spreads a rumor in $\Theta(\log \log n)$ rounds. Moreover when $\beta=3$, the Push-Pull protocol spreads a rumor in $\Theta(\frac{ \log n}{\log\log n})$ rounds.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.


Author(s):  
Yi-Bo Wang ◽  
Yi-Feng Wang ◽  
Yan-Ru Yang ◽  
Xiao-Dong Wang ◽  
Min Chen
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Liang’an Huo ◽  
Xiaomin Chen

AbstractWith the rapid development of information society, rumor plays an increasingly crucial part in social communication, and its spreading has a significant impact on human life. In this paper, a stochastic rumor-spreading model with Holling II functional response function considering the existence of time delay and the disturbance of white noise is proposed. Firstly, the existence of a unique global positive solution of the model is studied. Then the asymptotic behavior of the global solution around the rumor-free and rumor-local equilibrium nodes of the deterministic system is discussed. Finally, through some numerical results, the validity and availability of theoretical analysis is verified powerfully, and it shows that some factors such as the transmission rate, the intensity of white noise, and the time delay have significant relationship with the dynamical behavior of rumor spreading.


Sign in / Sign up

Export Citation Format

Share Document